Похожие презентации:
Матрицы и операции над ними
1.
Лекция 1. «Матрицы и действия надними»
2.
à11 à12à
à
21
22
À
... ...
àm1 àm 2
àij
... à1n
... à2 n
... ...
... àmn
3.
2. Виды матрицПрямоугольная
Квадратная
Нулевая
Единичная
Диагональная
Симметричная
Вырожденная
Равные
Треугольная
Квазитреугольная (ступенчатая или трапециевидная)
Матрица-строка или строчная матрица
Матрица-столбец или столбцевая матрица
4.
Матрица называется прямоугольной, если количество еестрок не совпадает с количеством столбцов:
1
À
0
2
2
3
0
3
5
Матрица называется квадратной, если количество ее строк
совпадает с количеством столбцов:
7 45
À
1 0
5.
Матрица называется нулевой, если все ее элементы нулевые :0 0 0
À
0 0 0
Квадратная матрица называется единичной, если элементы
по главной диагонали единицы, а остальные элементы
нулевые :
1 0 0
À 0 1 0
0 0 1
6.
Квадратная матрица называется диагональной, еслиэлементы по главной диагонали отличны от нуля, а
остальные элементы нулевые:
2 0 0
À 0 3 0
0 0 1
Квадратная матрица называется симметричной, если
относительно главной диагонали для всех ее элементов
выполняется условие aij a ji :
1 0 1
À 0 2 77
1 77 3
7.
Матрицы А и В (одинаковых размерностей) называютсяравными, если aij bij :
1 3
À 13 0
2 7
1 3
B 13 0
2 7
8.
Квадратные матрицы видаa11
a
n1
a1n
или
0
1
0
À
0
0
называются треугольными.
1 2 3
À 4 5 0
6 0 0
a11
0
2
5
0
0
a1n
ann
3 4
6 7
8 9
0 10
9.
Прямоугольная матрица видаa11
0
0
a12
a22
a1m
a2 m
0
amm
a1n
a2 n
amn
называется квазитреугольной (ступенчатая или
трапециевидная)
1
À 0
0
2
2
0
1
2
3
0
3
3
3
1
1
1
0
5
10.
Матрица, состоящая из одной строки называется матрицейстрокой или строчной матрицей.À 1 2 3 0
Матрица, состоящая из одного столбца называется
матрицей-столбцом или столбцевой матрицей
2
À 0
2
11.
Операции над матрицамиЛинейные:
1) Сумма (разность) матриц;
2) Произведение матрицы на число.
Нелинейные:
1) Транспонирование матрицы;
2) Умножение матриц;
3) Нахождение обратной матрицы.
12.
Суммой (разностью) двух матриц одинаковойразмерности называется матрица, элементы которой
равны сумме (разности) соответствующих элементов
матриц слагаемых.
Например:
à11 à12 à13
b11 b12 b13
À
, B
à21 à22 à23
b21 b22 b23
à11 b11 à12 b12 à13 b13
A B
à21 b21 à22 b22 à23 b23
13.
Пример2
À 0
4
A B ?
A B ?
B A ?
3
5
4 , B 7
2
9
6
0
1
14.
Произведением матрицы на число называется матрица,полученная из данной умножением всех ее элементов
на число.
Например:
à11 à12 à13
À
à21 à22 à23
à11 à12 à13
à21 à22 à23
15.
Пример2
À 0
4
3
5
4 , B 7
2
9
2A ?
3B ?
4B 7 A ?
6
0
1
16.
Линейные операции обладают следующими свойствами:1) A B B A
2) A B C A B C
3) A 0 A
4) A A 0
5) 1 A A
6) A A
7) A B A B
8) A A A
17.
Матрица, полученная из данной заменой каждой еестроки столбцом с тем же номером, называется
матрицей, транспонированной относительно
данной.
Например:
à11 à12 à13
À
,
à21 à22 à23
à11 à21
T
A à12 à22
à
13 à23
18.
Свойства операции транспонирования:1) A A
T T
2) A B A B
T
T
3) A B B A
T
T
T
T
19.
Матрица А называется согласованной сматрицей В, если число столбцов матрицы А
равно числу строк матрицы В:
Например:
1)
Àm n ,
Bn k
2)
À2 4 ,
B4 1
3)
Àm 2 ,
B2 k
назад
20.
Умножение матриц определяется для согласованныхматриц.
Произведением матрицы Àm n àij на матрицу
Bn k bij называется матрица Cm k cij , для
которой cij ai1 b1 j ai 2 b2 j ... ain bnj ,
т.е. каждый элемент матрицы С равен сумме
произведений элементов i-й строки матрицы А
на соответствующие элементы j-го столбца
матрицы В.
21.
Например:b11
à11 à12 à13
b21
à21 à22 à23 b
31
à11 b11 à12 b21 à13 b31
à21 b11 à22 b21 à23 b31
22.
Пример2
À 0
4
A B ?
3
1 2
4 , B
0 3
9
A B ?
B A ?
A B ?
B AT ?
T
T
T
B A ?
T
T
23.
Свойства операции умножение матриц:1. Свойство сочетательности или ассоциативности
AB C A BC
2.
AB A B A B
3.
Свойство распределительности (дистрибутивности)
справа и слева относительно сложения матриц
A B C AC BC
C A B CA CB
24.
В случае, когда АВ=ВА, матрицы А и В называютперестановочными или коммутативными.
Пример 1. Найти все перестановочные матрицы к матрице
1 2
À
0 3
Пример 2. Найти все перестановочные матрицы к матрице
2 4
À
1 0