514.36K
Категория: ХимияХимия

Альдегиды и кетоны

1.

Альдегиды и кетоны

2.

Карбонильные соединения
• Карбонильные соединения – это органические вещества,
молекулы которых содержат карбонильную группу:

3.

Карбонильные соединения
• Карбонильные соединения делятся на альдегиды и кетоны.
Общая формула карбонильных соединений: СnH2nO.

4.

Альдегиды
• Альдегидами называются органические соединения, содержащие
карбонильную группу, в которой атом углерода связан с
радикалом и одним атомом водорода.
• Структурная формула альдегидов:

5.

Кетоны
• Кетонами называются соединения, в молекуле которых
карбонильная группа связана с двумя углеводородными
радикалами.
• Структурная формула кетонов:

6.

Строение карбонильных соединений
• Атом углерода в карбонильной группе находится в состоянии sp2 гибридизации.

7.

Номенклатура карбонильных соединений
• Нумерация ведется от атома углерода карбонильной группы.
• По систематической номенклатуре к названию альдегида
добавляют суффикс «-АЛЬ».
• 2-метилпропаналь

8.

• К названию кетонов добавляют в название суффикс «-ОН». После
этого добавляют номер атомов углерода карбонильной группы.
• пентанон-2

9.

Тривиальные названия альдегидов и
кетонов.

10.

Изомерия карбонильных соединений
• Изомерия альдегидов
• Для альдегидов характерна структурная изомерия – изомерия
углеродного скелета и межклассовая изомерия.
• Структурные изомеры — это соединения с одинаковым составом,
которые отличаются порядком связывания атомов в молекуле,
т.е. строением молекул.
• Изомерия углеродного скелета характерна для альдегидов,
которые содержат не менее четырех атомов углерода.

11.

Формуле С4Н8О соответствуют два
альдегида-изомера углеродного скелета
• Бутаналь
2-Метилпропаналь

12.

Изомерия альдегидов
• Межклассовые изомеры — это вещества разных классов с
различным строением, но одинаковым составом. Альдегиды
являются межклассовыми изомерами с кетонами,
непредельными спиртами и непредельными простыми эфирами,
содержащими одну двойную связь в молекуле. Общая формула
этих классов органических соединений — CnH2nО.
• Межклассовая изомерия характерна для альдегидов, которые
содержат не менее трех атомов углерода.

13.

Изомерия альдегидов
• Межклассовые изомеры с общей формулой С3Н6О: пропаналь
СН3–CH2–CHO и ацетон CH3–СO–CH3
• Пропаналь
Ацетон ( пропанон)

14.

Изомерия кетонов
• Для кетонов характерна изомерия углеродного скелета, изомерия
положения карбонильной группы и межклассовая изомерия.
• Изомерия углеродного скелета характерна для кетонов, которые
содержат не менее пяти атомов углерода.

15.

Например. Формуле С5Н10О соответствуют
кетоны-изомеры углеродного скелета
• Пентанон-2
3-Метилбутанон-2

16.

Изомерия положения карбонильной группы
характерна для кетонов, которые содержат не
менее пяти атомов углерода.
Межклассовые изомеры — это вещества разных классов с
различным строением, но одинаковым составом. Кетоны являются
межклассовыми изомерами с альдегидами, непредельными
спиртами и непредельными простыми эфирами, содержащими
одну двойную связь в молекуле. Общая формула этих классов
органических соединений — CnH2nО.
Межклассовая изомерия характерна для кетонов, которые
содержат не менее трех атомов углерода.

17.

Например. Межклассовые изомеры с общей
формулой С3Н6О: пропаналь СН3–CH2–CHO и
ацетон CH3–СO–CH3
Пропаналь
Ацетон (пропанон)

18.

Физические свойства альдегидов и кетонов
• Все альдегиды и кетоны, кроме формальдегида – жидкости.
Лёгкие альдегиды хорошо растворимы в воде из-за водородных
связей, которые они образуют с водой.

19.

Химические свойства альдегидов и кетонов
• 1. Реакции присоединения
В молекулах карбонильных соединений присутствует двойная
связь С=О, поэтому для карбонильных соединений характерны
реакции присоединения по двойной связи. Присоединение к
альдегидам протекает легче, чем к кетонам.

20.

1.1. Гидрирование
Альдегиды при взаимодействии с водородом в присутствии
катализатора (например, металлического никеля) образуют
первичные спирты, кетоны — вторичные:

21.

1.2. Присоединение воды
• При гидратации формальдегида образуется малоустойчивое
вещество, называемое гидрат. Оно существует только при низкой
температуре.

22.

1.3. Присоединение спиртов
• При присоединении спиртов к альдегидам образуются вещества,
которые называются полуацетали.
• В качестве катализаторов процесса используют кислоты или
основания.
• Полуацетали существует только при низкой температуре.

23.

• Полуацетали – это соединения, в которых атом углерода связан с
гидроксильной и алкоксильной (-OR) группами.
• Полуацеталь может взаимодействовать с еще одной молекулой
спирта в присутствии кислоты. При этом происходит замещение
полуацетального гидроксила на алкоксильную группу OR’ и
образованию ацеталя:

24.

1.4. Присоединение циановодородной
(синильной) кислоты
• Карбонильные соединения присоединяют синильную кислоту
HCN. При этом образуется гидроксинитрил (циангидрин):

25.

2. Окисление альдегидов и кетонов
• Реакции окисления в органической химии сопровождаются
увеличением числа атомов кислорода (или числа связей с
атомами кислорода) в молекуле и/или уменьшением числа
атомов водорода (или числа связей с атомами водорода).
• В зависимости от интенсивности и условий окисление можно
условно разделить на каталитическое, мягкое и жесткое.

26.

• При окислении альдегиды превращаются в карбоновые кислоты.
Альдегид → карбоновая кислота
Метаналь окисляется сначала в муравьиную кислоту, затем в углекислый
газ:
Формальдегид→ муравьиная кислота→ углекислый газ
Вторичные спирты окисляются в кетоны:
вторичные спирты → кетоны
• Типичные окислители — гидроксид меди (II), перманганат калия
KMnO4, K2Cr2O7, аммиачный раствор оксида серебра (I).
• Кетоны окисляются только при действии сильных окислителей и
нагревании.

27.

2.1. Окисление гидроксидом меди (II)
• Происходит при нагревании альдегидов со свежеосажденным
гидроксидом меди, при этом образуется красно-кирпичный
осадок оксида меди (I) Cu2O. Это — одна из качественных
реакций на альдегиды.

28.

• муравьиный альдегид окисляется гидроксидом меди (II)
HCHO + Cu(OH)2 = Cu + HCOOH + H2O
• Чаще в этой реакции образуется оксид меди (I):
HCHO + 2Cu(OH)2 = Cu2O + HCOOH + 2H2O

29.

2.2. Окисление аммиачным раствором
оксида серебра
• Альдегиды окисляются аммиачным раствором оксида серебра
(реакция «серебряного зеркала»).
• Поскольку раствор содержит избыток аммиака, продуктом
окисления альдегида будет соль аммония карбоновой кислоты.

30.

• при окислении муравьиного альдегида аммиачным раствором
оксида серебра (I) образуется карбонат аммония

31.

• Образование осадка серебра при взаимодействии с аммиачным
раствором оксида серебра — качественная реакция на
альдегиды.

32.

2.3. Жесткое окисление
• При окислении под действием перманганатов или соединений
хрома (VI) альдегиды окисляются до карбоновых кислот или до
солей карбоновых кислот (в нейтральной среде). Муравьиный
альдегид окисляется до углекислого газа или до солей угольной
кислоты (в нейтральной среде).
• при окислении уксусного альдегида перманганатом калия в
серной кислоте образуется уксусная кислота

33.

• Кетоны окисляются только в очень жестких условиях (в кислой
среде при высокой температуре) под действием сильных
окислителей: перманганатов или дихроматов.
• Реакция протекает с разрывом С–С-связей (соседних с
карбонильной группой) и с образованием смеси карбоновых
кислот с меньшей молекулярной массой или СО2.

34.

35.

2.4. Горение карбонильных соединений
• При горении карбонильных соединений образуются углекислый
газ и вода и выделяется большое количество теплоты.
CnH2nО + 3n/2O2 → nCO2 + nH2O + Q
CH2O + O2 = CO2 + H2O

36.

3. Замещение водорода у атома углерода,
соседнего с карбонильной группой
• Карбонильные соединения вступают в реакцию с галогенами, в
результате которой получается хлорзамещенный (у ближайшего к
карбонильной группе атома углерода) альдегид или кетон.
• при хлорировании уксусного альдегида образуется
хлорпроизводное этаналя

37.

Получение карбонильных
соединений

38.

1. Окисление спиртов
• При окислении первичных спиртов образуются альдегиды, при
окислении вторичных спиртов – кетоны.

39.

1.1. Окисление спиртов оксидом меди (II)
• при окислении этанола оксидом меди образуется уксусный
альдегид

40.

• при окислении изопропанола оксидом меди образуется ацетон

41.

1.2. Окисление спиртов кислородом на
меди
• При пропускании паров спирта с кислородом над медной сеткой
образуются альдегиды и кетоны.

42.

• В промышленности формальдегид получают окислением
метанола на серебряном катализаторе при температуре 650оС и
атмосферном давлении:

43.

1.3. Окисление спиртов сильными
окислителями
• Вторичные спирты при этом окисляются до кетонов. Первичные
спирты можно окислить до альдегидов, если предотвратить
дальнейшее окисление альдегида (например, отгонять
образующийся альдегид в ходе реакции).

44.

2. Дегидрирование спиртов
• При пропускании спирта над медной сеткой при нагревании
образуются карбонильные соединения.
• при дегидрировании этанола образуется этаналь

45.

3. Гидратация алкинов
• Присоединение воды к алкинам в присутствии солей ртути (II)
приводит к образованию карбонильных соединений.
• при гидратации ацетилена образуется уксусный альдегид

46.

• при гидратации пропина образуется ацетон

47.

4. Гидролиз дигалогенпроизводных
алканов
• Под действием водного раствора щелочи образуется
неустойчивый диол с двумя ОН-группами при одном атоме С, он
теряет воду, превращаясь в альдегид или кетон.
• при гидролизе 1,1-дихлорэтана образуется этаналь

48.

5. Каталитическое окисление алкенов
• При окислении этилена кислородом в присутствии катализаторов
образуется уксусный альдегид.
English     Русский Правила