Похожие презентации:
Методы и алгоритмы обработки сигналов и изображений. Введение
1. Методы и алгоритмы обработки сигналов и изображений Введение
Корлякова Мария Олеговна2015
2. темы
№темы
число
тема
1
4
Особенности представления и обработки
сигналов и изображений в интеллектуальных
системах
2
4
Выделение признаков в сигналах и изображениях
при формализации и представления
3
2
Разложения изображений по ортогональным
базисам и кодирование изображений
4
2
Методы обработки информационных сигналов для
улучшения изображений
5
4
Алгоритмы и методы для решения задач
распознавания изображений
6
1
Методы и алгоритмы синтеза изображений .
3. Оценка
Лабы (40%)
РК (10%)
Тесты на лекциях(20%)
Посещение(30%)
4. Особенности представления и обработки сигналов и изображений в интеллектуальных системах
План:• Классификация методов представления информации
для интеллектуальной обработки.
• Плохо определенные задачи
• Основы формализаций для представления объектов и
систем. Признак, объект, класс.
• Модели представления информации. Методы
обработки информации.
• Система для интеллектуальной обработки информации
(общая схема).
• Методы измерения расстояний для образов (повторение)
5. Интеллект
• Intellectus – лат.• Intelligence – англ.
• artificial intelligence – искусственный
интеллект
• ИИ (AI)
• Искусственные Интеллектуальные
Системы – ИИС(AIS)
6. Примеры
Чтение книги
Собака узнает хозяина или другую собаку
Росянка опознает муху
Замок и ключ :-)
7. История
• Нейрофизиология и психология конец 19века, начало 20-го века (Павлов - собака)
• Р.Фишер – дискриминантный анализ – 1936 г.
(направление наибольшей различимости)
• Колмогоров А.Н. – Разделение смеси двух
распределений 1936-1940
• Кибернетика – Н.Виннер - 1948г.
• Кластерный анализ –начало 20-го века
• Многомерное шкалирование 70-е
• Нейронные сети 50-е
8. Фигуры
В.М.Глушков,
В.С.Михалевич,
В.С.Пугачев,
НП.Бусленко,
Ю.И.Журавлев,
Я.З.Цыпкин,
А.Г.Ивахненко,
М.А.Айзерман,
Э.М.Браверман,
М.М.Бонгард,
В.Н.Вапник,
Г.П.Тартаковский,
В.Г.Репин,
Л.А.Растригин,
А.Л.Горелик и др.
Р. Фишер
П.Ч. Махаланобис
Г.Хотелинг
Ф.Розенблатт
Хопфилд
Т.Кохонен
С. Пайперт
М. Минский
Р.Гонсалес,
У.Гренандер,
Р.Дуда,
Г.Себестиан,
Дж.Ту,
К.Фу,
П.Харт.
9. Основные цели разработки систем распознавания
• Освобождение человека отоднообразных рутинных операций для
решения других более важных задач.
• Повышение качества выполняемых работ.
• Повышение скорости решения задач.
10. Проблемы ИИ
Представление знаний
Решение неформализованных задач
Создание комплексных ИИ систем
Интеллектуальный анализ данных
Естественный язык и ЭВМ
Обучение
Моделирование разума
Техническое зрение
11. Направление исследований
• Моделирование результатовинтеллектуальной деятельности –
машинный интеллект
• Моделирование биологических систем –
искусственный разум(нейрокомпьютеры):
1. Моделирование механизмов умственной
деятельности (клеток мозга)
2. Моделирование мыслительных операций
3. Эвристическое моделирование (1+2)
12. Плохо формализованные задачи
Нет числовой формы
Цель не формализована
Нет алгоритма
Данные неполные, неточные,
неоднозначные, противоречивые
13. Типы знаний
• Факты (extensional)• Законы (intensional)
• Глубинные
• Поверхностные
• Жесткие
• Мягкие
14. Данные и знания
Внутренняя интерпретируемость
Структурированность
Связность
Семантическая метрика
Активность
15. Задачи ИИС
Интерпретация
Прогноз
Диагностика
Мониторинг
Управление
Планирование
Проектирование
16. Задачи ИИС
мягкиепрогноз
управление
планирование
интерпретация
глубинные
поверхностные
мониторинг
диагностика
жесткие
проектирование
17. Классификация ИИС
• Изменяемость среды– Статическая
– Динамическая
• Тип представления знаний
–
–
–
–
Логические и Продукционные
Иерархические (сети, сценарии и фреймы)
Нечеткие
Нейросетевые
18. Классификация ИИС
• Тип вывода (способ получения ответа)–
–
–
–
Дедукция
Индукция
Абдукция
Нейросетевой вывод
19. Образ не объект
• Описание не полностью представляет объект• Описание зависит от задач
• Описание содержит погрешности представления
• Любой образ представляется некоторым
набором признаков
• Основное назначение описаний (образов) это их использование в процессе
установления соответствия объектов
20.
21. Схема обработки информации. Изображения
освещениеФормирование
2D изображений
Изображение
2D
Преобразование
в Цифровое
изображение
Объекты
сцены
Формирование
3D изображений
Цифровое
изображение
Изображение
3D
Объект →датчик→сигнал→цифровое описание сигнала
22. Схема обработки информации. Изображения
Повышениекачества
изображения
Выделение
контуров
Цифровое
изображение
Выделение
простых структур
Упрощение и
структурирование
информации!
Калибровка
Выделение
движения
Описание
текстур
Изображение
признака
Распознавание
областей
Изображение
области
23. Схема обработки информации. Изображения
Анализформы
Описание
объекта
Изображение
области
Пиксельная или
объектная
классификация
морфология
Классы
объектов
Принятие решений!!!!!
Изображение
признака
24. Построение систем интеллектуальной обработки информации
Построение признаков
Селекция признаков
Подавление помех
Преобразование признаков
Отнесение к группе объектов (образу)
Формирование групп объектов (образов)
25. литература
• Методы современной и классическойтеории управления. Т5. - 2004
• Математические методы распознавания
образов. Курс лекций. МГУ, ВМиК,
кафедра «Математические методы
прогнозирования», Местецкий Л.М., 2002–
2004.
26. Тема 2. Задача распознавания образов как выделение характерных признаков
План:Общая задача классификации.
Классы.
Описания классов вероятностное
(параметрическое, непараметрическое),
логическое.
• Меры компактности объектов в множествах,
расстояния: Евклидово, по Хеммингу
• Признаки для описания объектов.
27. Задача классификации
• Разделить объект на 2 группы и сказать ккакой из них относиться новый объект:
28. Класс
• классы - это объединенияобъектов (явлений), отличающиеся
общими свойствами, интересующими
человека.
• цель распознавания – принятие
решения об отнесении объекта к тому
или иному классу.
29. Гипотеза компактности
• Классическая. Реализация одного и того жеобраза, обычно, отображается признаком
пространства геометрически близкими
точками.
• Гипотеза -компактности
Расстояние мало, но есть неоднородность.
С1
С2
30. Рабочие утверждения
• Необработанное представление информацииувеличивает ошибку обобщения нейронной
сети и время на ее обучение.
• Состав и порядок представления объектов
значительно влияет на результат обучения
нейронной сети.
31. Проблема
• Необходимо отобрать интересныесоставляющие описания объекта – селекция
:А КАК?
• Необходимо определить правильное
преобразование описания объектов – выбор
способа обработки : А КАКОЕ?
• Реализация дополнительного алгоритма
преобразования описания объектов
увеличивает время обработки данных : ВСЕ
ПРОПАЛО?
32. Описание классов по признакам
• Столы для работыпризнак
Длина, м
Ширина, м
Число ящиков
Стол 1
1
0.6
3
Стол 2
1.5
0.7
5
Стол 3
3
0.7
4
признак
Длина, м
• Столы
для1.обеда
Стол 1
6
Ширина, м
Число ящиков
1.2
1
Стол 2
1.5
0.8
0
Стол 3
3
1.25
0
33. Описание классов структурами
• Столы для работыстолешница
Боковая
опора
Ящики
Боковая
опора
• Столы для обеда
столешница
Ножка
1
Ножка
2
Ножка
3
Ножка
4
34. Описания классов вероятностное
Р(классf(x|ci) i)
Рабочий стол
обеденный
стол
Ширина стола , м
0
0.5
1
1.5
2
x - длина стола, м
35. Логическое описание образа
• Обеденный стол содержит несколько( неменее 1) ножки и немного ящиков (не
более 2), его столешница имеет
отношение ширины к длине не более 1/2
36. Расстояния между объектами – object distance
• Метрики : Минковский (упорядоченныепризнаки)
• Меры: Хемминг (номинальные признаки)
• Число преобразований (структурное
расстояние)
• Луна –Лупа – Липа – Лига – Лира – Мира
– Мирт – Март – Марс
37. Расстояние между множествами
• Ближний сосед• Средний
• Дальний сосед
• Метрика Хаусдорфа
38. Датчик
• Преобразование внешнего мира вцифровое описание доступное
компьютерной обработке
• Аналогво-Цифровое Преобразование –
АЦП – Digitizer
• Квантование
• Дискретизация
39. Преобразование оптического сигнала
40. Получение пиксельного изображения
• Спроецированное изображениенепрерывное, с гладкими границами
• На матрице оно дискретизируется
По пространству (пиксельная решетка)
По цвету
41. Получение изображения
N – среднее числофотонов
Δt – экспозиция
λ=N/Δt - средний поток фотонов
Пуассоновский процесс
Μ=λΔt
σ2= λΔt
42. Шум датчика
• Для высокоуровневого сигнала нормальное распределение• N(Qe,√Qe)
• Qe – число фотонов за время экспозиции
Qe
Qp
• Qp – число возбуждаемых электронов
43. Шум датчика
• общее число порождаемых зарядов• Q=Q0+Qe
• σ2Q=σ2 Q0+σ2Qe
Цифровые схемы линейны
g=KQ – цифровой сигнал
σ2g=K2σ2 Q0+K2σ2Qe
Qe = σ2Qe
σ2g=σ2 0+Kg - линейный рост дисперсии от g
44. Цветовая модель датчика
45. Типы изображений
Рисунок
Фотография
Оптическое
электронное
46. Чувствительность человека
47. Lab
Яркость(L) - brightnessТон (a –зеленый-пурпурный, b – синийжелтый )
shade (a – green-purple, b – blue-yelow)
48. color model - RGB
49.
• RGB• G
R
B
50. Формирование сигнала-изображение
Формирование сигналаизображениеМИР – освещенные объекты сцены
Датчик – фотосенсор
АЦП
Формат хранения
51. Схема видеоподсистемы ЭВМ
52. Приемники
• Камеры• Сканеры
53. Типы матриц
• ПЗС-матрица (CCD, «Charge CoupledDevice»);
• КМОП-матрица (CMOS, «Complementary
Metal Oxide Semiconductor»);
• SIMD WRD (Wide dynamic range) матрица;
• Live-MOS-матрица;
• Super CCD-матрица.
54. ПЗС
• 1 — фотоны света, прошедшие черезобъектив фотоаппарата;
2 — микролинза субпикселя;
3 — R — красный светофильтр
субпикселя, фрагмент фильтра
Байера;
4 — прозрачный электрод из
поликристаллического кремния или
сплава индия и оксида олова;
5 — оксид кремния;
6 — кремниевый канал n-типа: зона
генерации носителей — зона
внутреннего фотоэффекта;
7 — зона потенциальной ямы (карман
n-типа), где собираются электроны из
зоны генерации носителей заряда;
8 — кремниевая подложка p-типа.
55. ПЗС
56. Размер сенсора
57. Методы получения цветного изображения
• Трёхматричные системы• Матрицы с мозаичными фильтрами
» Фильтр Байера
• Матрицы с полноцветными пикселами
58. Глубина цвета - Depth of color
• Квантование цвета• Число разрядов для представления цвета
– 1- бинарный
– 8-полноцветный
–
–
–
–
Число бит на пиксель
1
8
24
59. Геометрия оптической системы фотодатчика
60. Модель камеры-обскуры
• Модель:В преграде отверстие размеров в одну точку
Все лучи проходят через одну точку
Эта точка называется Центром Проекции (ЦП)
Изображение формируется на Картинной
плоскости
– Фокусным расстоянием f называется
расстояние от ЦП до Картинной плоскости
–
–
–
–
61. Камера-Обскура
Camera Obscura, Gemma Frisius, 1558• Самая Первая Камера
– Была известная еще Аристотелю
– Глубина комнаты и есть Фокусное расстояние
62. Идеальная камера
63. Модель – перспективная проекция
О• Камера-обскура
• Изображение позади фокуса
• Изображение перевернутое
Фокусное расстояние
• Модель перспективной
проекции
• Перенесем объект на
противоположенную сторону
• То же самое фокусное
расстояние!
• Изображение нормальное, не
перевернутое
Фокусное расстояние
О
64. Модель – перспективная проекция
• Фокусное расстояниеО
Картинная плоскость
Центр проекции
(оптический центр)
Изображение формируется на картинной плоскости
65. Простейший случай
Фокусное расстояние = 1A =(X,Y,Z)
a=(x,y)
O =(0,0,0)
Z
x X
1 Z
y Y
1 Z
• Поместим центр системы координат в ЦП
• Смотрим вдоль оси z
• Фокусное расстояние = 1
66. Трехмерный вид
Aa
f
Z
O
Y
X
x
Z
x
y
X
Y
y
Z
• - Нелинейное
преобразование
(Деление на Z)
67. Однородные координаты
добавим дополнительную координату!Однородные координаты
точки изображения
Однородные координаты
точки сцены
Перевод из однородных в обычные:
68. Однородные координаты
( x, y ) ( x, y,1) ( wx, wy, w)Одна и та же точка изображения!
( X , Y , Z ) ( X , Y , Z ,1) (WX ,WY ,WZ ,W )
Одна и та же точка сцены!
69. Преобразования - сдвиг и масштаб
X aX TxaX Tx a
bY T 0
y
cZ Tz 0
1 0
0 0 Tx X
b 0 Ty Y
*
0 c Tz Z
0 0 1 1
70. Евклидово преобразование
• Переход от одного ортонормированного базиса к другому• Поворот R и сдвиг T
X
X '
X
Y '
R
T
Y
*
Z ' [0,0,0] 1 Z
1
1
Y
O
Z
X’
Z’
Y’
R ,T
3 x3
O’
3
71. Матричная запись проекции
Xx
Z
Y
y
Z
X
x 1 0 0 0 X X / Z X / Z
y 0 1 0 0 * Y Y Y / Z Y / Z
Z
1 0 0 1 0 Z Z / Z 1
1
72. Матрица проецирования
• Обозначим:1 0 0 0
I 0 1 0 0
0 0 1 0
• Поэтому простейшее уравнение
центральной проекции:
a I*A
A – точка сцены, a – проекция
73. Добавим фокусное расстояние
Фокусное расстояние = fA =(X,Y,Z)
a=(x,y)
O =(0,0,0)
Z
• Пусть фокусное расстояние = f
x X
f
Z
y Y
f Z
X
Y
x f
y f
Z
Z
74. Матричная запись проекции
Xx f
Z
x f
y 0
1 0
0
f
0
Y
y f
Z
X
0 0 fX fX / Z
Y
0 0 *
fY fY / Z
Z
1 0 Z 1
1
75. Композиция преобразований
Ретинальная плоскостьКартинная плоскость
(retinal plane)
A =(X,Y,Z)
a=(x,y)
a’=(x’,y’)
O =(0,0,0)
Z
f
1
• Рассмотрим как композицию
преобразований
– Проецирование на ретинальную плоскость
76. Композиция преобразований
•В матричном виде композиция преобразований записываетсякак:
f
0
0
0
f
0
0 0 f
0 0 0
1 0 0
Масштабирование до
картинной плоскости
0
f
0
0 1 0 0 0
0 * 0 1 0 0
1 0 0 1 0
Проецирование на ретинальную
плоскость
77. Перевод в координаты изображения
Перевод в координатыA
изображения u
v
a
p
x
y
Z
f
O
Y
X
• Умеем проецировать А на картинную плоскость, получая а
• Картинная плоскость состоит из пикселей
• Начало координат изображения – верхний левый угол
78. Принципиальная точка
uПринципиальная
точка
v
p
x
y
Z
f
O
Y
X
• Принципиальная точка – основание перпендикуляра
из ЦП на картинную плоскость
• В указанной системе координат (x,y): p = (0,0)
• В p проецируются все точки с координатами (0,0.Z)
79. Перевод в координаты изображения
Перевод в координатыu
изображения
v
p
y
x
Перевод в новую систему координат
–
Масштабирование (в пикселах)
–
Новая центр координат (сдвиг)
( x, y ) ( sx cx , sy c y ) ( x / pix cx , y / pix c y )
Где pix – размер пикселя, c x , c y - принципиальная точка в
координатах изображения
80. Матричная запись перевода в пиксели
( x, y ) ( sx cx , sy c y ) ( x / pix cx , y / pix c y )0
c x x x / pix c x
u 1 / pix
v 0
* y y / pix c
1
/
pix
c
y
y
1 0
0
1 1
1
81. Внутренняя калибровка
• Объединим масштабирование по фокусномурасстоянию и перевод в пиксели
0
cx f
1 / pix
0
* 0
1
/
pix
c
y
0
0
1 0
0
f
0
0 f / pix
0 0
1 0
cx
f / pix c y
0
1
0
Масштабирование до
картинной плоскости
Перевод в пиксели
Внутренняя калибровка!
82. Внутренняя калибровка
• Объединим масштабирование по фокусномурасстоянию и перевод в пиксели
f / pix
K 0
0
cx
f / pix c y
0
1
0
X
u
Y
v K * I *
Z
1
1
Внутренняя калибровка!
Текущее уравнение центральной
проекции
83. Матрица и картинная плоскость
uv
y
x
• Матрица камеры конечного размера!
• Картинная плоскость бесконечна
• При проецировании точки могут выходить за пределы
матрицы
84. Смысл внутренней калибровки для реконструкции
Zf
O
X
Y
• Есть изображение и точка на нем
• Как проходит луч?
85. От пикселя к лучу
От пикселя к1 лучуv
K
Ретинальная
плоскость
u
b
K
a
Картинная
плоскость
x
O
y
Z
Y
X
K
K
1
b=(u,v)
a=(x,y)=(x,y,1)
• a=(x,y)
b=(u,v)
O = (0,0,0), a = (x,y,1) – луч в пространстве
86. Мировая система координат
Мировая системаA координатXW
YW
a
x
OC
YC
ZC
y
XC
• До сих пор – система координат была связана с камерой
• Но А задается обычно в мировых координатах, как и положение камеры!
• Нужно перевести А из мировых координат в координаты камеры
OW
ZW
87. Из мировой в координаты камеры
1C
YC
XC
OC
ZC
C
XW
YW
OW
ZW
T
R
C
[0,0,0] 1
• Положение и ориентация камеры в мировых координатах задается
евклидовым преобразованием С
• Обратное преобразование
– Из мировых координат в координаты камеры
– Обратное к C преобразование! – Inverse(C)
88. Внешняя калибровка
• Матрица преобразованияиз мировой системы координат в систему
координат камеры называется матрицей внешней калибровки
1
R
T
R
R T
C
1
[0,0,0]
[0,0,0] 1
1
T
T
• Внешняя калибровка определяется положением и ориентацией
камеры в пространстве
89. Полная матрица проекции
Скомпонуем все наши преобразования:• Из мировой системы координат в систему
координат камеры
• Центральная проекция на ретинальную плоскость
• Масштабирование и перевод в пиксели
P K I C
Матрица
проекции
Внутренняя
калибровка
1
Центральная
проекция
Внешняя
калибровка
90. Реальная камера
91. Апертура – не точка!
• Целый пучок лучей проходит через отверстие в преграде• Изображение одной точки – небольшой кружок
• Размер кружка зависит от размера апертуры
92. Уменьшаем апертуру
• апертура маленькая (точка )– Меньше апертура – меньше света проходит
– При малых апертурах начинаются
дифракционные эффекты
93. Уменьшаем диафрагму
94. Линза!
Линза позволяет использовать большую диафрагмуи увеличить поток света от каждой точки
95. Линза
ЛИНЗА96. Преломление света
Луч света на стыке различных материалов преломляетсяГде n – коэффициент преломления, - угол между
нормалью к поверхности и направлением луча
В школьной оптике полагается sin(x)~x для тонких линз
97. Линза
NО
F’
• NN’ – главная оптическая ось, пересекающая центры сферических
поверхностей
• Пучок параллельных прямых пересекается в главном фокусе F’
• ОF’ – главное фокусное расстояние
N
’
98. Линза
F’-F’
2F’
А
О
F’
B’
B
А’
f
u
1 1 1
- Основное уравнение линзы
u v f
• u,v – сопряженные фокусные расстояния
v
99. Линза
F’-F’
2F’
А
О
F’
B’
B
А’
f
u
v
• Луч, проходящий через центр линзы не преломляется!
• Система точно как камера-обскура, но собирает больше света!
100. Фокусировка
Только часть объектов оказываются «вфокусе»
101. Пятно рассеяния
Оu
v
• Пусть матрица поставлена так, чтобы сходились лучи от
объекта на расстоянии u
• Пучок лучей не сходится в одну точку, а образует на пленке
«кружок рассеяния» или «пятно рассеяния»
102. Управление глубиной резкости
• Изменяя диафрагму можно изменятьразмер «пятен рассеяния»
103. Управление глубиной резкости
• Диафрагма управляет глубиной резкости– Уменьшение диафрагмы увеличивает интервал, на
котором объект находится приблизительно в фокусе
– Маленькая апертура также уменьшает количество света
– приходится увеличивать выдержку (время экспозиции)
104. Изменение глубины резкости
f/2.8f/22
Большая диафрагма = маленькая DOF Маленькая диафрагма = большая DOF
105. Угол обзора (поле зрения)
A• Размер пленки и фокусное расстояние
определяют угол обзора (field-of-view) камеры.
• Размера пленки фиксирован
– Изменение фокусного расстояния управляет полем зрения
106. Зависимость поля зрения от фокусного расстояния
ff• Больше фокусное расстояние – меньше угол обзора
• Меньше фокусное расстояние – больше угол обзора
107. Поле зрения и трансфокация (Zoom)
108. Недостатки линз
НЕДОСТАТКИ ЛИНЗ109. Хроматическая аберрация
• Угол преломления света зависит от длины волны• Лучи разного цвета преломляются по разном
• Лучи разного цвета от одной и той же точки
расходятся по краям изображения
110. Хроматическая аберрация
Центр изображенияКрай изображения
111. Радиальная дисторсия
Прямые линии по краям изображенияпревращаются в кривые
112. Радиальная дисторсия
Нет дисторсии«Подушка» (положительная)
Бочкообразная
– Идеально тонких линз не бывает!
– Нарушается допущение sin(x) ~ x
– Искажения наиболее заметны по краям
изображения
113. Изображение =Сигнал
• Интенсивность от координаты I(x,y)• ФРТ – функция рассеивания точки
• ОПФ – оптическая передаточная функция
114. ФРТ - point spread function, PSF
оптическая система никогда не изображает точку в виде точки
h(x,y) зависимость распределения освещенности от координат в
плоскости изображения, если предмет - это светящаяся точка в
центре изопланатической зоны.
Диаметр диска Эри
115. Функция рассеяния точки
Исходное изображение200
Полученное изображение
210
220
50
230
100
150
240
410
200
250
300
350
50
100
150
200
250
300
350
400
450
500
10
11
420
430
12
440
13 14
450
460
116. ФРТ - point spread function, PSF
117. ОПФ
118. Построение признаков для изображений
• Признаки формы• Признаки порядка
• Признаки структуры
119. Литература
Девятков В.В. Системы искусственногоинтеллекта: Учебное пособие для вузов —
М: из-во МГТУ, 2001 — 352.
Комарцова Л.Г., Максимов А.В.
Нейрокомпьютеры: Учебное пособие для
вузов — М: из-во МГТУ, 2004
Математические методы распознавания
образов. Курс лекций. МГУ, ВМиК, кафедра
«Математические методы
прогнозирования», Местецкий Л.М., 2002–
2004.