Похожие презентации:
AVL trees. (Lecture 8)
1. AVL Trees
CSE 373Data Structures
Lecture 8
2. Readings
• Reading› Section 4.4,
12/26/03
AVL Trees - Lecture 8
2
3. Binary Search Tree - Best Time
• All BST operations are O(d), where d istree depth
• minimum d is d log2N for a binary tree
with N nodes
› What is the best case tree?
› What is the worst case tree?
• So, best case running time of BST
operations is O(log N)
12/26/03
AVL Trees - Lecture 8
3
4. Binary Search Tree - Worst Time
• Worst case running time is O(N)› What happens when you Insert elements in
ascending order?
• Insert: 2, 4, 6, 8, 10, 12 into an empty BST
› Problem: Lack of “balance”:
• compare depths of left and right subtree
› Unbalanced degenerate tree
12/26/03
AVL Trees - Lecture 8
4
5. Balanced and unbalanced BST
14
2
2
5
3
1
4
4
12/26/03
6
3
Is this “balanced”?
5
2
1
3
5
6
7
AVL Trees - Lecture 8
7
5
6. Approaches to balancing trees
• Don't balance› May end up with some nodes very deep
• Strict balance
› The tree must always be balanced perfectly
• Pretty good balance
› Only allow a little out of balance
• Adjust on access
› Self-adjusting
12/26/03
AVL Trees - Lecture 8
6
7. Balancing Binary Search Trees
• Many algorithms exist for keepingbinary search trees balanced
› Adelson-Velskii and Landis (AVL) trees
(height-balanced trees)
› Splay trees and other self-adjusting trees
› B-trees and other multiway search trees
12/26/03
AVL Trees - Lecture 8
7
8. Perfect Balance
• Want a complete tree after every operation› tree is full except possibly in the lower right
• This is expensive
› For example, insert 2 in the tree on the left and
then rebuild as a complete tree
6
5
4
1
12/26/03
9
5
8
Insert 2 &
complete tree
1
AVL Trees - Lecture 8
2
8
4
6
9
8
9. AVL - Good but not Perfect Balance
• AVL trees are height-balanced binarysearch trees
• Balance factor of a node
› height(left subtree) - height(right subtree)
• An AVL tree has balance factor calculated
at every node
› For every node, heights of left and right
subtree can differ by no more than 1
› Store current heights in each node
12/26/03
AVL Trees - Lecture 8
9
10. Height of an AVL Tree
• N(h) = minimum number of nodes in anAVL tree of height h.
• Basis
› N(0) = 1, N(1) = 2
• Induction
h
› N(h) = N(h-1) + N(h-2) + 1
• Solution (recall Fibonacci analysis)
› N(h) > h ( 1.62)
12/26/03
AVL Trees - Lecture 8
h-1
h-2
10
11. Height of an AVL Tree
• N(h) > h ( 1.62)• Suppose we have n nodes in an AVL
tree of height h.
› n > N(h) (because N(h) was the minimum)
› n > h hence log n > h (relatively well
balanced tree!!)
› h < 1.44 log2n (i.e., Find takes O(logn))
12/26/03
AVL Trees - Lecture 8
11
12. Node Heights
Tree A (AVL)height=2 BF=1-0=1
Tree B (AVL)
2
6
1
0
1
4
9
4
6
1
9
0
0
0
0
0
1
5
1
5
8
height of node = h
balance factor = hleft-hright
empty height = -1
12/26/03
AVL Trees - Lecture 8
12
13. Node Heights after Insert 7
Tree A (AVL)2
Tree B (not AVL)
balance factor
1-(-1) = 2
3
6
1
1
1
4
9
4
6
2
9
0
0
0
0
0
1
1
5
7
1
5
8
-1
0
height of node = h
balance factor = hleft-hright
empty height = -1
12/26/03
AVL Trees - Lecture 8
7
13
14. Insert and Rotation in AVL Trees
• Insert operation may cause balance factorto become 2 or –2 for some node
› only nodes on the path from insertion point to
root node have possibly changed in height
› So after the Insert, go back up to the root
node by node, updating heights
› If a new balance factor (the difference hlefthright) is 2 or –2, adjust tree by rotation around
the node
12/26/03
AVL Trees - Lecture 8
14
15. Single Rotation in an AVL Tree
22
6
6
1
2
1
1
4
9
4
8
0
0
1
0
0
0
0
1
5
8
1
5
7
9
0
7
12/26/03
AVL Trees - Lecture 8
15
16.
Insertions in AVL TreesLet the node that needs rebalancing be .
There are 4 cases:
Outside Cases (require single rotation) :
1. Insertion into left subtree of left child of .
2. Insertion into right subtree of right child of .
Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of .
4. Insertion into left subtree of right child of .
The rebalancing is performed through four
separate rotation algorithms.
12/26/03
AVL Trees - Lecture 8
16
17.
AVL Insertion: Outside CaseConsider a valid
AVL subtree
j
k
h
h
h
X
12/26/03
Z
Y
AVL Trees - Lecture 8
17
18.
AVL Insertion: Outside Casej
k
h+1
Inserting into X
destroys the AVL
property at node j
h
h
Z
Y
X
12/26/03
AVL Trees - Lecture 8
18
19.
AVL Insertion: Outside Casej
k
h+1
Do a “right rotation”
h
h
Z
Y
X
12/26/03
AVL Trees - Lecture 8
19
20.
Single right rotationj
k
h+1
Do a “right rotation”
h
h
Z
Y
X
12/26/03
AVL Trees - Lecture 8
20
21.
Outside Case Completed“Right rotation” done!
(“Left rotation” is mirror
symmetric)
k
j
h+1
h
h
X
Y
Z
AVL property has been restored!
12/26/03
AVL Trees - Lecture 8
21
22.
AVL Insertion: Inside CaseConsider a valid
AVL subtree
j
k
h
X
12/26/03
h
h
Z
Y
AVL Trees - Lecture 8
22
23.
AVL Insertion: Inside CaseInserting into Y
destroys the
AVL property
at node j
j
k
h
h
X
12/26/03
Does “right rotation”
restore balance?
h+1
Z
Y
AVL Trees - Lecture 8
23
24.
AVL Insertion: Inside Casek
j
h
X
“Right rotation”
does not restore
balance… now k is
out of balance
h
h+1
Z
Y
12/26/03
AVL Trees - Lecture 8
24
25.
AVL Insertion: Inside CaseConsider the structure
of subtree Y…
j
k
h
h
X
12/26/03
h+1
Z
Y
AVL Trees - Lecture 8
25
26.
AVL Insertion: Inside Casej
Y = node i and
subtrees V and W
k
i
h
X
h+1
Z
h or h-1
V
12/26/03
h
W
AVL Trees - Lecture 8
26
27.
AVL Insertion: Inside Casej
We will do a left-right
“double rotation” . . .
k
i
X
V
12/26/03
Z
W
AVL Trees - Lecture 8
27
28.
Double rotation : first rotationj
left rotation complete
i
Z
k
W
X
12/26/03
V
AVL Trees - Lecture 8
28
29.
Double rotation : secondrotation
j
Now do a right rotation
i
Z
k
W
X
12/26/03
V
AVL Trees - Lecture 8
29
30.
Double rotation : secondrotation
right rotation complete
Balance has been
restored
i
j
k
h
h
h or h-1
X
12/26/03
V
W
AVL Trees - Lecture 8
Z
30
31. Implementation
balance (1,0,-1)key
left
right
No need to keep the height; just the difference in height,
i.e. the balance factor; this has to be modified on the path of
insertion even if you don’t perform rotations
Once you have performed a rotation (single or double) you won’t
need to go back up the tree
12/26/03
AVL Trees - Lecture 8
31
32. Single Rotation
RotateFromRight(n : reference node pointer) {p : node pointer;
p := n.right;
n
n.right := p.left;
p.left := n;
n := p
}
You also need to
modify the heights
or balance factors
of n and p
12/26/03
X
Insert
Y
AVL Trees - Lecture 8
Z
32
33. Double Rotation
• Implement Double Rotation in two lines.DoubleRotateFromRight(n : reference node pointer) {
????
n
}
X
Z
12/26/03
AVL Trees - Lecture 8
V
W
33
34. Insertion in AVL Trees
• Insert at the leaf (as for all BST)› only nodes on the path from insertion point to
root node have possibly changed in height
› So after the Insert, go back up to the root
node by node, updating heights
› If a new balance factor (the difference hlefthright) is 2 or –2, adjust tree by rotation around
the node
12/26/03
AVL Trees - Lecture 8
34
35. Insert in BST
Insert(T : reference tree pointer, x : element) : integer {if T = null then
T := new tree; T.data := x; return 1;//the links to
//children are null
case
T.data = x : return 0; //Duplicate do nothing
T.data > x : return Insert(T.left, x);
T.data < x : return Insert(T.right, x);
endcase
}
12/26/03
AVL Trees - Lecture 8
35
36. Insert in AVL trees
Insert(T : reference tree pointer, x : element) : {if T = null then
{T := new tree; T.data := x; height := 0; return;}
case
T.data = x : return ; //Duplicate do nothing
T.data > x : Insert(T.left, x);
if ((height(T.left)- height(T.right)) = 2){
if (T.left.data > x ) then //outside case
T = RotatefromLeft (T);
else
//inside case
T = DoubleRotatefromLeft (T);}
T.data < x : Insert(T.right, x);
code similar to the left case
Endcase
T.height := max(height(T.left),height(T.right)) +1;
return;
}
12/26/03
AVL Trees - Lecture 8
36
37. Example of Insertions in an AVL Tree
220
0
1
10
30
0
25
12/26/03
Insert 5, 40
0
35
AVL Trees - Lecture 8
37
38. Example of Insertions in an AVL Tree
23
20
1
1
1
10
30
10
0
0
5
25
0
35
20
0
5
2
30
0
1
25
35
0
Now Insert 45
12/26/03
AVL Trees - Lecture 8
40
38
39. Single rotation (outside case)
33
20
1
2
1
10
30
10
0
0
5
25
2
35
0
5
20
2
30
0
40 1
25
0
Imbalance
12/26/03
35
1 40
0 45
AVL Trees - Lecture 8
0
45
Now Insert 34
39
40. Double rotation (inside case)
33
20
0
5
1
3
1
10
30
10
0
2
Imbalance 25
20
35
0
40
2
1
5
40 1
30
0
1 35
Insertion of 34 0
12/26/03
45 0
0 25
34
45
34
AVL Trees - Lecture 8
40
41. AVL Tree Deletion
• Similar but more complex than insertion› Rotations and double rotations needed to
rebalance
› Imbalance may propagate upward so that
many rotations may be needed.
12/26/03
AVL Trees - Lecture 8
41
42.
Pros and Cons of AVL TreesArguments for AVL trees:
1. Search is O(log N) since AVL trees are always balanced.
2. Insertion and deletions are also O(logn)
3. The height balancing adds no more than a constant factor to the
speed of insertion.
Arguments against using AVL trees:
1. Difficult to program & debug; more space for balance factor.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and use
other structures (e.g. B-trees).
4. May be OK to have O(N) for a single operation if total run time for
many consecutive operations is fast (e.g. Splay trees).
12/26/03
AVL Trees - Lecture 8
42
43. Double Rotation Solution
DoubleRotateFromRight(n : reference node pointer) {RotateFromLeft(n.right);
n
RotateFromRight(n);
}
X
Z
V
12/26/03
AVL Trees - Lecture 8
W
43