Похожие презентации:
Динамика. Законы динамики
1. Динамика
2.
Динамика - раздел теоретическоймеханики, в котором изучаются
движение тел под действием
приложенных сил
3. Законы динамики.
4.
1)І-ый закон Ньютона
Если на тело не действуют силы,
то оно находится либо в
состоянии покоя либо сохраняет
состояние равномерного
прямолинейного движения.
5.
2)ІІ-ой закон Ньютона
Ускорение движения тела
пропорционально действующей
на него силе
ma = F
6.
3)ІІІ-ий закон Ньютона
Каждому действию
соответствует равное и
противоположно направленное
противодействие
7. 4) Принцип суперпозиции.
Если на тело действуетнесколько сил, то ускорение
движения тела будет
пропорционально одной силе,
равной их геометрической сумме
8.
FnM
a
F2
F1
Главный вектор системы сил
F = F1 + F 2 + … + F n
9. Дифференциальные уравнения движения точки.
10. Дифференциальные уравнения движения точки в декартовой системе координат.
11.
zM (x,y,z)
F1
F2
0
x
Fn
z
x
y
y
12.
ma = F1 + F2 + … + FnПроецируем векторное равенство на
оси декартовой системы координат
^
ox: ma cos( a, i ) = F1x +…+ Fnx
^
oy: ma cos( a, j ) = F1y +…+ Fny
^
oz: ma cos( a, k ) = F1z +…+ Fnz
13.
Проекции ускорений:^
a ·cos( a, i ) = ax = x
^
a ·cos( a, j ) = ay = y
^
a ·cos( a, k ) = az = z
14.
дифференциальные уравнениядвижения точки в декартовой с. к.
S Fkx
m y = S Fky
m z = S Fkz
mx=
15. Дифференциальные уравнения движения точки в осях естественного трехгранника.
16.
bM
n
F1
t
Fn
F2
17.
t - единичный вектор касательнойn - единичный вектор главной
нормали
b - единичный вектор бинормали
Запишем ІІ-ой закон Ньютона:
ma = F1 + F2 + … + Fn
18.
Проецируем это равенство на осиестественного трехгранника:
ma cos( a,
^
t ) = F1 cos(F1, t ) +
^
^
^
^
^
...
ma cos( a, n ) = F1 cos(F1, n ) +
...
ma cos( a, b ) = F1 cos(F1, b ) +
...
19.
Проекции ускорений будут равны:d
S
a cos( a, t ) = 2
dt
2
V
^
a cos( a, n ) =
2
^
r
^
a cos( a, b ) = 0
- тангенсальная
составляющая
- нормальная
составляющая
- т.к. вектор ускорения
лежит в соприкасающейся
плоскости
20.
дифференциальные уравнениядвижения точки в осях
естественного трехгранника
d
S
m 2 =
dt
2
V
m
=
2
r
S Fk cos( Fk , t )
^
S Fk cos( Fk , n )
^
21. Задачи динамики
22.
Прямая задачаПо известной массе,
известному закону движения
требуется определить
результирующую силу,
действующую на тело.
23.
Дано:m
x = x(t)
y = y(t)
z = z(t)
Найти:
F-?
24.
Решение:m x = Fx
m y = Fy
m z = Fz
F = Fx + Fy + Fz - модуль силы
2
2
2
25.
Направление задаетсянаправляющими косинусами:
F
x
cos(F, x ) =
F
F
y
^
cos(F, y ) =
F
F
z
^
cos(F, z ) =
F
^
26.
Обратная задачаПо известной массе, известным
силам, известным начальным
условиям требуется определить
закон движения.
27.
dx
m 2 = Fx (t, x, y, z, x, y, z)
dt
2
d
y
m 2 = Fy (t, x, y, z, x, y, z)
dt
2
d
z
m 2 = Fz (t, x, y, z, x, y, z)
dt
2
28.
Для того, чтобы получитьзакон движения,
необходимо дважды
проинтегрировать каждое
уравнение, используя
начальные условия (но не
всякий интеграл берется).
29.
mgH
mg
y
30.
t = 0, y0 = 0, y0 = 0, y - ?Запишем закон движения в проекции
на ось оу:
m y = S Fky
т.е.
Решим дифференциальное
уравнение:
Т.к.
y = Vy , то
m y = mg
y=g
dVy = g
dt
31.
tVy
dVy = g dt
0
0
Vy = g t
t
y
dy = g t
dt
=>
dy = g t dt
0
0
gt
y= 2
2
32. Динамика системы
33.
Внешние силы Fe
- силы, действующие на тела
данной системы со стороны тел,
не входящих в данную систему
Внутренние силы F
i
- силы взаимодействия между
телами данной системы.
34.
Главный вектор внутреннихсил системы равен нулю.
Главный момент внутренних
сил системы равен нулю.
35. Масса. Центр масс.
36.
nМасса системы М = S mk
k=1
- сумма масс тел, входящих в
систему.
Центр масс системы
- геометрическая
точка, радиусвектор которой
определяется:
n
rc =
Smr
n
Sm
k=1
k=1
k k
k
37.
Для того, чтобы получитькоординаты центра масс, надо
спроецировать векторное
равенство на оси.
38.
nxc =
Smx
k
k=1
k
M
n
yc =
Smy
k
k=1
k
M
n
zc =
Smz
k
k=1
M
k
39. Дифференциальные уравнение движения системы
40.
41.
42. Теорема об изменении количества движения
43.
Запишем ІІ-ой закон Ньютона для точки:ma = F
d ( mv ) = F
dt
Получим теорему об
изменении количества
движения точки в
дифференциальной
форме:
mv = Q
d( mv ) = F dt
- количество движения точки
44.
nQ=
v
k
Smv
k
k=1
=
rk
k
- количество движения
системы - сумма
количеств движений
точек, входящих в систему
Распишем выражение и поменяем
суммирования и дифференцирования т.к.
они не зависят друг от друга:
n
dr
k = d
m
Q= S
k
k=1
dt
dt
n
Smv
k=1
k
k
45.
d(Mrc)
Q=
dt
=>
dr c
Q=M
dt
Q = M vc
- количество движения системы произведение массы системы и скорости
ее центра масс
46.
Запишем ІІ-ой закон Ньютона для системыточек:
e
i
d
v
k =
S mk
S Fk + S Fk
dt
Меняя порядок суммирования и
дифференцирования получим:
d S m v = Fe
k k
dt
Теорема об изменении
количества движения:
dQ = F e
dt
47.
Первая производная по времени отвектора количества движения системы
равна главному вектору внешних сил
48.
Следствия :1) Если главный вектор внешних сил
системы равен нулю, то тело покоится
или движется равномерно.
Если F = 0 , то Q = const
2) Внутренними силами нельзя изменить
e
количество движения системы.
3) Спроецируем Теорему на
координатные оси:
49.
dQ x = eFx
dt
dQ y = e
Fy
dt
dQ z = F e
z
dt
Если Fx = 0 , то Q x = const
e
50. Теорема о движении центра масс системы
51.
d ( M v ) = Fec
dt
M ac = F
e
dv c = e
M
F
dt
Эта формула гласит:
Центр масс системы движется как
материальная точка, к которой
приложены все силы, действующие на
систему.
52.
Следствия :1) Внутренними силами нельзя изменить
движение центра масс системы.
2) Если главный вектор внешних сил
системы равен нулю, то скорость
движения центра масс системы
постоянна.
Если F = 0 , то v c = const
e
53.
3) m ac = Fe
e
m ac x = Fx
e
m ac y = Fy
m ac z = Fz
e
Если проекция главного вектора внешних
сил на какую-либо ось равна нулю, то
проекция скорости центра масс на эту ось величина постоянная.
Если Fx = 0 , то v c x = const
e
54. Теорема об изменении момента количества движения
55.
По ІІ закону ньютонаma = F
Пусть r - радиус-вектор, определяющий
положение точки относительно какой
либо системы координат.
Домножим векторно уравнение на r.
r ma = r F
Распишем ускорение и внесем r под
знак дифференциала:
56.
dv
d
(r m v ) r m
=
dt dt
dr
mv
Обозначим:
dt
K0 = r m v - момент количества
движения точки
относительно точки О
M0 = r F
- момент силы F
относительно точки О
57.
Момент количества движениясистемы определяется как
векторная сумма моментов
количества движения точек,
входящих в систему.
n
K0 =
S K0
n
k=1
k
=
S r m v
k=1
k
k
k
58. Момент количества движения твердого тела, вращающегося вокруг неподвижной оси
(кинетический момент)59.
zhz
v
dm
w
60.
hz - кратчайшее расстояние от точкимассой dm до оси вращения
Линейная скорость точки определяется:
v = wz·hz
Количество движения точки массой dm :
v dm = wz hz dm
Тогда момент количества движения этой
точки:
2
v dm hz = wz hz dm
61.
Для всего тела кинетический моментотносительно оси вращения:
Kz =
I=
wz hz dm
Kz = wz hz2 dm
h2 dm - момент инерции тела
2
относительно оси
(осевой момент инерции)
Kz = Iz ·wz
62. Моменты инерции
63.
zdm
r
z
0
x
x
y
y
64. Осевой момент инерции точки
- произведение массы точки на квадратрасстояния до оси
Izk = dm·hz2 = dm(x2 + y2)
- для точки
Iz = hz2 · dm
- для тела
65. Полярный момент инерции точки
- произведение массы точки на квадратрасстояния от точки до полюса
I0k = dm·r 2 = dm(x2 + y2 + z2)
- для точки
I0 = r 2 ·dm
- для тела
66. Центробежные моменты инерции
- произведение массы точки накоординаты, стоящие в индексе
67.
для точки -Ixy = dm·x ·y
Ixz = dm·x z
Iyz = dm·y z
Ixy = x y ·dm
Ixz = x z ·dm
Iyz = y z ·dm
- для тела
68.
Задача:Найти все моменты инерции
М - масса
z
l - длина
l
x
x
dx
69.
Масса кусочка dx :l
Iz =
0
M
dm =
dx
l
l
M dx ·x 2 = M x = M l
l
l 3
3
3
2
0
- момент инерции относительно оси z
M
l
Ic =
12
2
- момент инерции относительно
оси, проведенной через середину
длины бруска параллельно оси z
70.
zz
R
M
R
Iz =
2
R
2
Iz = M R
2
71. Теорема об изменении момента количества движения точки
d (r m v ) = M e0
dt
dK = e
M0
dt
72.
Производная по времени от векторамомента количества движения
точки равна моменту внешних сил
относительно той же точки.
Получим эту теорему для системы. Пусть
система состоит из n-материальных точек.
Разделим все силы, действующие на
систему, на внешние и внутренние и для
каждой точки запишем теорему об
изменении количества движения точки.
73.
dK =e
i
M
(
F
)
+ M (F )
dt
01
0
1
0
1
...............
dK n =
e
i
M
(
F
n ) + M ( Fn )
dt
0
0
0
74.
Почленно сложим уравнения системы:n
n
n
dK k =
e
i
S
S
M
(
F
k ) + S M ( Fk )
k=1 dt
k=1
k=1
0
0
0
n
d
e
S
K
k = M
dt k=1
0
0
dK = e
M
dt
0
0
75.
Следствия :1)
2)
Внутренними силами нельзя изменить
момент количества движения системы.
Если главный момент внешних сил
системы равен нулю, то вектор
момента внешних сил системы величина постоянная.
Если M = 0 , то K = const
e
0
0
76.
3) dKx
=
e
Mx
Если проекция
главного момента
внешних сил на какуюлибо ось равна нулю,
то кинетический
момент - величина
постоянная.
dt
dKy = e
My
dt
dKz = e
Mz
dt
e
Если Mx = 0 , то Kx = const
77. Дифференциальное уравнение движения твердого тела относительно неподвижной оси
78.
Kz = Iz ·wzdKz =
e
Mz
dt
dw
e
= Mz
Iz
dt
Iz φ = Mz
e
79. Работа силы
80. Прямолинейное перемещение тела.
81.
Fa
V
A=F S cos(a)
82. Перемещение тела по кривой.
83.
Если точка перемещается по кривой исила изменяется, то для того чтобы найти
работу силы, произведенную на участке
М1М2, разобьем дугу М1М2 на n-частей.
Тогда если размер каждого участка D S мал, то можно считать, что дуга,
ограничивающая этот участок,
приближается к хорде, и сила не
успевает изменить ни величину ни
направление.
84.
MV
DS
2
a
M
M
1
F
85.
Тогда работа , произведенная силой наk-ом участке определится как:
A = F cos(a ) DS
k
k
k
k
Вся работа на участке М1М2 равна:
n
A
1,2
S F cos(a ) DS
k
k=1
k
k
86.
Работа определяется точнокриволинейным интегралом:
A = F cos(a) dS
1,2
M1M2
Элементарная работа:
dA = F cos(a) dS
Найдем другое выражение для
элементарной работы
87.
Va
dr
F
M
r
O
88.
89. Работа силы, постоянной по величине и направлению.
90.
F=constM2
a
M
r2
F
M1
r1
O
91.
r2F dr = F dr = F (r - r )
A =
2
1,2
r1
M1M2
r -r = M M
2
1
1
2
Тогда работа равна:
A = F M M = F S cos(a)
1,2
1
где:
2
S = MM
1
2
1
92. Работа силы тяжести.
93.
M1
M
a
H
S
P
M
2
94.
Изменение положения тела по высотеопределяется:
H = S cos(a)
Тогда работа на участке равна:
A = P H = P S cos(a)
1,2
Если тело опускают - работа положительная,
если поднимают - отрицательная.
95. Работа силы, приложенной к твердому телу, вращающемуся вокруг неподвижной оси.
96.
zF
F
e
n
h
e
b
M
F
e
t
w
97.
h - кратчайшее расстояние от точки дооси вращения. Сила F разложена на
составляющие:
e
Fn - проекция силы на нормаль
e
Ft - проекция силы на касательную
e
Fb - проекция силы на бинормаль
e
Работа силы Fn равна нулю т.к. в
направлении этой силы нет перемещения
e
(или между векторами V и Fn угол 90°).
98.
eРабота силы Fb также равна нулю.
e
Элементарная работа силы Ft :
e
t
e
t
dA = F dS = F h d
e
e
z
dA = M d
Полная работа:
e
e
z
A = M d
O
99.
Если: M = conste
z
A = M D
e
z
- работа момента
100. Пример
Центр тяжести однородного колесаподнимается на высоту h, под
действием момента М
Найти работу внешних сил.
101.
NS
M
m,R
m,R
O
Fтр
P
a
mg
H
102.
M = const ;SA - ?
e
Работы силы трения и силы
реакции опоры равны нулю.
AF = 0
тр
AN = 0
S A =- m g H + M D
e
т. P -
МЦС
103.
Vw=
R
0
Интегрируя, получим:
S
H
=
=
R
R sin(a)
H
SA = m g H + M
R sin(a)
e
104. Кинетическая энергия
105. Кинетическая энергия точки
106.
Для точки второй закон Ньютонавыглядит так:
ma = F
d
v
m
=F
dt
Домножаем ур-ние на приращение вектора r
d
v
m
·dr = F ·dr
dt
d
v
dr
m
·dr = m
·dv =
dt
dt
107.
Заменим отношение дифференциаловскоростью и внесем ее под знак
дифференциала.
2
mv
= mv ·dv = d(
)
2
2
mv
d( 2 ) = d'A
m
v
T=
2
2
- Теорема об
изменении
кинетической
энергии точки в
дифференциальной
форме.
108.
Кинетическая энергия системыопределяется как сумма
кинетических энергий точек,
входящих в систему.
1
T= 2
n
S mkvk
k=1
2
109. Кинетическая энергия системы. (Теорема Кёнига)
110.
z2z1
Mk
rk
rk
O1
x1
y2
O2
ro
x2
y1
111.
01x1y1z1 - неподвижная система координатСистема координат 02x2y2z2 перемещается
поступательно.
112.
rk = r0 + rkДифференцируем уравнение по времени.
vk = v0 + vk r
vk r - скорость точки относительно
подвижной системы координат
Tr
1
= 2
n
S mkv
k=1
2
kr
- кинетическая энергия системы
относительно подвижной системы координат
113.
1T= 2
1
= 2S
1
+ 2S
+
n
S mk(v0 + vk r)
k=1
2
mkv0 +
2
kr
mkv
v0 S mkv
2
kr
2
=
S mkv0 vk r +
1
= 2
+
v0 S mk +
Tr
2
114.
rc - радиус-вектор, определяющийположение центра масс системы
относительно подвижной системы
координат
S
m
k rk
rc =
M
Дифференцируем повремени:
S
mk vk r
vc r =
M
115.
S mk vk r = M vc rvc r - скорость центра масс относительно
неподвижной системы координат
1
T= 2
2
v0 M + v0 vc r M + Tr
Совместим начало подвижной системы
координат с центром масс системы:
vc r = 0
116.
1T= 2
2
M v0 + Tr
Кинетическая энергия системы равна
сумме кинетической энергии
поступательного движения центра масс
системы и кинетической энергии
движения системы относительно
центра масс.
117. Кинетическая энергия твёрдого тела
118. При поступательном движении:
Кинетическая энергия системы определяется1
T= 2
S mkvk
1
T= 2
v S mk
1
T= 2
2
2
2
v M
vk = v
где:
1
= 2
2
v M
- полупроизведение массы
тела на его скорость
119. При вращательном движении:
12
z
T = mv
k
2
k
vk
w
Mk
hk
vk = w hk
k
120.
Tk1
=2
mk hk w
2
2
Кинетическая энергия системы:
1
T= 2
S mkvk
2
S mk hk
2
1
T= 2
=
w Iz
2
1
= 2
Iz
w
2
S mk hk
2
- момент инерции
вращательного
движения точки
121. При плоскопараллельном движении:
кинетическая энергия определяетсяпо формуле Кёнига -
1
T= 2
1
T= 2
2
M v0 + Tr
2
m v0
1
+ 2
I0w
2
122. Пример
rС
Дано: r, m-радиус и масса
однородного диска. VcVC скорость центра масс диска.
Диск катится без скольже –
ния. Определить кинетическую энергию диска.
1
1
2
2
T = mVc + I cω
2
2
Vc
ω=
r
1 2
I C = mr
2
123.
21 2 VC
mr • 2
1
1
2
T = mVc +
2
2 2
3
2
= mVC
4
r
=
124. Теорема об изменении кинетической энергии системы
125.
Пусть система состоит изn-материальных точек.
Делим все силы, действующие на
систему, на внешние и внутренние
и для каждой точки запишем
теорему об изменении
кинетической энергии.
126.
2m1v1
e
i
d( 2 ) = dA1 + dA1
...............
2
mnvn
e
i
d( 2 ) = dAn + dAn
2
mkvk
d
(
)
=
S
2
k=1
n
n
n
S dAk + S dAk
k=1
e
k=1
i
127.
2mkvk
e
i
dS
(
)
= dA + dA
2
k=1
n
- сумма элементарных работ,
произведенных всеми внешними
и всеми внутренними силами
e
i
dT = dA + dA
- теорема об изменении кинетической
энергии системы в дифференциальной
форме.
128.
Если под действием внешних ивнутренних сил системы она
перемесилась из начального
положения в конечное, то в
интегральной форме теорема об
изменении кинетической энергии
будет иметь вид:
e
T - T0 = A + A
i
129.
Изменение кинетической энергиисистемы при перемещении ее из
начального положения в конечное
равна сумме работ внешних и
внутренних сил.
130. Принцип Даламбера или Принцип кинетостатики
131.
Для каждой k-ой точки можнозаписать ІІ-ой закон Ньютона:
Fk = mk ak
Система состоит из n-точек. Разделяем
силы на внешние и внутренние.
e
i
Fk + Fk = mk ak
Обозначим:
и
Fk = - mk ak
- сила инерции.
132.
eТогда:
и
i
Fk + Fk + Fk = 0
т.е. сумма внешних, внутренних сил
системы и силы инерции равна нулю.
n
S Fk
k=1
e
n
+
n
S Fk + S Fk
k=1
i
k=1
и
=
0 (*)
Сумма главных векторов внешних сил,
внутренних сил и сил инерции также
равна нулю:
e
i
и
F +F +F = 0
133.
К каждой точке системы проведемсоответствующий радиус- вектор.
Векторно домножим на радиус-вектор rk.
n
n
n
S rk Fk + S rk Fk + S rk Fk
e
k=1
i
k=1
k=1
Тогда:
e
i
и
M0 + M0 + M0 = 0
и
=0
134.
eM0 - главный момент внешних сил
i
M0 - главный момент внутренних сил
и
M0 - главный момент сил инерции
Учитывая то, что главный момент и
главный вектор внутренних сил
системы равен нулю, принцип
Даламбера для системы примет вид:
и
e
F +F = 0
e
и
M0 + M0 = 0
135. Главный момент и главный вектор сил инерции
136.
nMac = kS= 1 Fk
e
e
- Теорема о движении
центра масс системы
и
F +F = 0
e
и
F = –F
и
F =
– Mac
Главный вектор сил инерции определяется
как произведение массы системы на
ускорение ее центра масс, взятое со знаком
«–».
и
и
m
F
ac
F
ac
137. Вращательное движение.
2Вращательное
движение.
z
C
x
C
e
O
e
y
y
O
x
F
и
138.
В проекции на ось z:dK0z
M =
dt
K0z = I0z· ω
и
0z
Подставим и получим:
и
0z
M
= – I0z·e
139.
3z
C
Вращательное
движение вокруг оси,
проходящей через
центр масс тела.
w
e
M0z
ac = 0
и
и
0z
M
= – I0z·e
140.
3Плоскопараллельное
движение.
и
F = – Mac
и
Mcz = – Icz·e
В этом случае присутствуют и
главный вектор и главный
момент сил инерции.
141.
yb
r ,I
c
B
A
x
P
142.
yM = Ie
и
g
e
g
yA
RB
B
A
x
g
xA
P
F = g a
и
143. Динамические реакции твердого тела, вращающегося вокруг неподвижной оси
144.
Bz
yB
xB
hc
Fn
F1
C
e
F2
e
A
xA
x
zA
a
e
w = const
AB = b
F
и
yA
F
и
y
145.
hc - кратчайшее расстояние отцентра масс до оси вращения.
Используем принцип Даламбера.
Составляем условие равновесия
пространственной системы сил.
При этом:
e
e
e
Fx , Fy , Fz - алгебраические суммы
проекций внешних сил на оси x,y,z;
и
и
и
Fx , Fy , Fz - проекции
силы инерции на оси x,y,z.
146.
ee
e
Мx , Мy , Мz - алгебраические
суммы проекций моментов
внешних сил на оси x,y,z;
и
и
Мx , Мy - проекции момента
силы инерции на оси.
147.
eи
e
и
xA + xB + Fx + Fx = 0
yA + yB + Fy + Fy = 0
и
e
zA + Fz + Fz = 0
– yB
e
и
e
и
b + Mx + Mx = 0
xB b + My + My = 0
148.
Сила инерции Ускорение центра масс и2
и
2
и
F = – Mac
2
ac = w hc
Fx = M w hc· cos(a) = M w xc
2
Fy = M w hc· sin(a) = M w yc
и
Fz = 0
2
149.
иmx (Fk ) - момент относительно
оси x от k-ой силы инерции
i j k
M0 (F) = r F = x y z
Fx Fy Fz
Для одной точки
M0 = i Mx + j My + k Mz
150.
иmx (Fk ) = y Fz – z Fy
и
my (Fk ) = z Fx – x Fz
и
mz (Fk ) = x Fy – y Fx
и
и
mx (Fk ) = – Fky z k = – mk w y k z k
и
и
2
my (Fk ) = Fkx z k = mk w x k z k
2
151.
Для того, чтобы найти моментысилы относительно
соответствующих осей для всего
тела необходимо суммировать:
и
Mx = – ( S mk y k z k) w =
2
= – Iyz w
и
Mx = ( S mk x k z k) w =
2
=
Ixz w
2
2
152.
Найденные выражения подставимxA + xB + Fx + M w xc = 0
e
2
yA + yB + Fy + M w yc = 0
e
e
2
zA + Fz = 0
e
2
– yB b + Mx – Iyz w = 0
e
2
xB b + My + Ixz w = 0
153.
Слагаемые, в которых присутствуетугловая скорость будут являться
динамическими реакциями.
Эти динамические реакции будут
равны нулю если
xc = 0 и yc = 0,
т.е. центр масс лежит на оси вращения,
и когда
Iyz = Ixz = 0,
т.е. когда ось вращения будет являться
главной центральной осью инерции.
154. Аналитическая механика
155. Аналитическая механика
• Методы аналитическоймеханики позволяют
рассматривать системы
без учета реакций
идеальных связей
156. Виртуальные (возможные) перемещения
157. Классификация связей
158.
1) Удерживающие связи(стержень, сфера)
(x2–x1) + (y2–y1) + (z2–z1) = l
2
2
2
2
Неудерживающие связи
(веревка, трос, цепь)
(x2–x1) + (y2–y1) + (z2–z1)
2
2
2
2
l
159.
2) Стационарные связиВ уравнении нет зависимости от времени.
Нестационарные связи
В уравнении - временная зависимость.
3) Голономные связи
Неголономные связи
Уравнение голономной связи не
содержит производной от координат, а
уравнение голономной - содержит.
160.
Пример:dx
f ( x, y, z,
,t) 0
dt
Неголономная
нестационарная
неудерживающая связь
161.
Уравнение связи имеет вид:f ( x, y, z, t ) = 0
Пусть M0 (x0, y0, z0 ) , r0
Дадим точке приращение r в
фиксированный момент времени
r ' = r0 + r
Все координаты
получили приращения
x ' = x0 + x
y ' = y0 + y
z ' = z0 + z
162.
Тогда:f (x0 + x, y0 + y, z0 + z, t ) =
Разложим уравнение в ряд
в окрестности точки М0
f
)
= f (x0, y0, z0, t ) + (
x
+
x 0
f
f
+ ( )0 y + (
)
0
z
+
.
.
.
=
y
z 0
Отбрасываем члены второго
и выше порядка малости.
163.
Учитываем, что первое слагаемоепо условию равно нулю.
Тогда уравнение справедливо когда сумма
2-го, 3-го, 4-го слагаемых равна нулю.
f
( x
f
+ (
f
)0 x + ( y
)
0
z
=
z 0
)0 y +
164.
f(grad f ) 0 = ( x
f
+(
)
k
z 0
т. е.
f
)0 i + ( y
(grad f ) 0· r = 0
=> a = 90°
)0 j +
165.
grad fdr v
r
166.
Виртуальное перемещение - мнимое,происходящее в фиксированный момент
времени, малое, не нарушающее
уравнения связей с учетом членов
первого порядка малости перемещение.
Для стационарных связей хотя бы одно
мнимое перемещение совпадает с
действительным.
Для нестационарных связей ни одно
мнимое перемещение не совпадает с
действительным.
167. Виртуальная работа
Дадим системе виртуальноеперемещение и подсчитаем
элементарную работу, произведенную
силами на этих перемещениях.
n
А =kS= 1 Fk· rk
168. Идеальные связи
- связи, работа реакций которых на любомвиртуальном перемещении равна нулю.
∑ Rk • ∂rk = 0
Принцип виртуальных
перемещений
n
S F k· rk = 0
k=1
169.
Для того, чтобы система, подчиненнаяидеальным стационарным
удерживающим связям, находилась в
равновесии, необходимо и достаточно,
чтобы сумма работ всех активных сил
на любом виртуальном перемещении
была равна нулю.
Этот принцип позволяет не
рассматривать реакций идеальных
связей и используется для тел,
находящихся в равновесии.
170.
Необходимость:Fk + R k = 0 , v k = 0
S ( Fk + R k )· rk = 0
S Fk · rk + S R k · rk = 0
S R k · rk = 0 => S Fk · rk = 0
171.
Достаточность:S Fk · rk = 0
S ( Fk + R k )· rk = 0
S Fk · rk + S R k · rk = 0
=> S Fk · rk = 0
172.
Задача.Определить величину силы F,
необходимую для равновесия.
Решить, используя принцип
виртуальных перемещений.
173.
F–?F F
h
M2g
x
M1g
a
Fтр2
174.
nS F k· vk = 0
k=1
– F x – Fтр x + M2 g h = 0
h = x tga
– F = Fтр+ M2 g tga
175.
F = M2 g tga – f (M2 + M2) gF x – Fтр x + M2 g tga x = 0
M2 g tga – f (M2 + M2) g F
M2 g tga + f (M2 + M2) g
176. Использование принципа виртуальных перемещений для определения реакций связей
177.
AF2
F1
C
RA
r A r1
F1
a
F3 B
D
178. Общее уравнение динамики
179.
Пусть система, состоящая из n-точек иподчиненная удерживающим голономным
идеальным связям, движется.
Освобождаемся от связей и для каждой
k-ой точки записываем ІІ-ой закон
Ньютона.
mk ak = Fk + R k
Fk = mk ak + R k = 0
180.
Даем системе виртуальное перемещение.Каждая точка переместится на rk
Домножаем уравнение на rk и
складываем все n-уравнений.
S (Fk – mk ak) rk + S R k rk = 0
R- реакция связи
S R k rk = 0
- по определению
идеальных связей.
181.
При движении материальной системы,подчиненной идеальным удерживающим
голономным связям, сумма работ
активных сил и сил инерции на любом
виртуальном перемещении равна нулю.
S (Fk – mk ak) rk = 0
- общее уравнение динамики.
182.
Пример:P, Q, Q, a – дано
a3 – найти
183.
MOи
2
3
M2
3 O a3
3
и
F1
a
F3
Q
и
и
1
Q
P
h
184. УРАВНЕНИЕ ЛАГРАНЖА II РОДА
ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ:∑ ( Fk
-
dVk
mk
)δrk = 0
dt
∂ rk
rk = ∑
q j =>
j =1 ∂ q j
s
s- число
степеней
свободы
185.
n ∂rdV
k
k
r = ∑ (F - m
) ∑
q = 0
k
k k dt
j
∂
q
j =1 j
dVk
∂ rk
= ∑∑ (mk
q j =
- Fk )
dt
∂ qj
j =1 k =1
s
n
186.
ndVk ∂ rk
= ∑ ∑ mk
dt
∂
q
j =1
k
=
1
j
s
∂ rk
∑ Fk ∂ q = Q j
j
-ОБОБЩЕННАЯ СИЛА
n
dVk ∂ rk
= ∑ ∑ mk
dt
∂
q
j =1
k
=
1
j
s
**
∂ rk
- ∑ Fk
q j = 0
∂ q j
k =1
n
- Q j q j = 0
187.
*dVk ∂ rk d
∂ rk
d ∂ rk
mk
= (mk Vk
) - mk Vk
dt ∂ q j dt
∂ qj
dt dq j
drk ∂ rk
∂ rk
∂ rk ∂ rk
Vk =
=
q1 ...
q j ...
qs
dt ∂ q1
∂ qj
∂ qs
∂t
dq
q=
Обобщенная скорость.
dt
Дифференци руем Уравнение
по обобщенной скорости q j
188.
∂ Vk∂ rk
=
∂
q
j
∂ qj
Изменим порядок дифференцирования
d ∂ rk
∂ drk
drk
=
, где
= Vk
dt ∂ q j ∂ q j dt
dt
189.
dVk ∂ rk d∂ Vk
∂ Vk
mk
= (mk Vk ) - mk Vk
dt ∂ q j dt
∂
q
j
∂qj
Вносим mkVk под знак частной производной
∂ Vk
∂
1
2
mk Vk = ( mkVk )
2
∂ qj ∂ q j
∂ Vk
∂ 1
2
mk Vk
=
( mkVk )
∂ qj ∂ qj 2
190.
dVk drk d ∂ 1∂ 1
2
2
mk
= [ ( mkVk )] ( mkVk )
dt dq j dt ∂ q 2
∂ qj 2
j
d ∂ 1
∂ 1
2
2
∑ (∑ [ dt ∂ q ( 2 mkVk ) ∂ q ( 2 mkVk )] Q j ) q j = 0
j =1 k =1
j
k
s
n
d
(
j =1 dt q j
S
mV
2
q j
k =1
n
2
k k
n
n
2
k k
mV
Q j ) q j = 0
2
k =1
2
k k
mV
=T
2
k =1
191.
d T T(
Q
)
q
=
0
j
j
q j
j =1 dt q
S
j
d T T
=
Q
j
dt q q j
j
192. ПРИ РЕШЕНИИ ЗАДАЧ НЕОБХОДИМО:
• Изобразить на чертеже все активныесилы, действующие на систему.
Реакции идеальных связей можно не
изображать. Силы трения
присоединить к активным силам.
• Определить число степеней свободы
и ввести обобщенные координаты
193.
• Вычислить кинетическую энергиюсистемы, выразив ее через
обобщенные координаты и скорости
• Найти обобщенные силы системы
• Выполнить указанные в уравнениях
Лагранжа действия
194.
YСтержень длиной l
и массой m. A и B
ползуны
Составить
уравнения
движения
стержня, найти
его угловую
скорость.
A
С
mg
B
X
195.
1) Силы – mg2) Степень свободы – 1
обобщенная координата
γ
•2
1
1
1 2
2
3) T = mVC + I C γ
I C = ml
2
2
12
1
1
YC = l cos γ
X C = l sin γ
2
2
1
X C = l cos
2
1
Y C = - l sin
2
196.
2υС
•2
•2
•2
1 2
= xC + yC = l γ
4
2
2
2 2
2 2
1 l
1 1
1
T = m ml = ml
2 4
2 12
6
4) Обобщенные силы
Потенциальная энергия
1
П = mgl cos
2
∂П
1
Q= = mgl sin
∂
2
197.
d T T=
Q
dt
∂T
1 2
=
ml
3
∂
d ∂T d 1 2
1 2 •
( ml γ ) = ml γ
• =
dt
dt 3
3
∂γ
198.
∂T= 0 ( кинетическая энергия
∂
не зависит от угла)
1 2 •• 1
ml γ = m lg sin γ
3
2
•
3g
γ=
sin γ
2l
До множим уравнение
d
199.
•3g
γ dγ =
sin γdγ
2l
•2
dγ
γ
γ dγ =
dγ = γ d γ = d ( )
dt
2
•
2
3g
d ( ) = d cos
2
2l
200.
Интегрируем2
3g
=
d cos C
2
2l
201.
Если в начальный момент времени= 0 , = 0, то
g
C = 3 cos 0
l
202.
Получаем угловую скорость стержня2
(
3g
=
cos 0 cos
2l
)