Похожие презентации:
Теория подобия и моделирования
1. Теория подобия и моделирования.
Подобиегеометрическое
Подобие
скоростей и ускорений
Подобие
динамическое
- критерий подобия; безразмерная величина; отношение размерных величин
M = v/a- число Маха, отношение скорости объекта к скорости звука.
Если М<1, то работает докритическое течение.
При М>1 происходят скачки уплотнения.
Скачок уплотнения -характерная для сверхзвукового течения область, в которой
происходит резкое увеличение давления, плотности, температуры и уменьшение
скорости течения газа. В ряде случаев тождествен ударной волне.
М=1- граница между событиями, надкритическое течение.
Докритическое и надкритическое течения качественно отличаются.
2. Турбулентное и ламинарное течение
Критерий РейнольдсаRe = dw /
d - диаметр;
w - скорость потока;
- плотность;
- динамическая вязкость.
Труба и движение вещества.
w
d
w
d
Ламинарное течение (слоистое).
Линейная зависимость между P и Q.
Турбулентное течение.
Нелинейная зависимость между P и Q.
Если Re < 2300, то ламинарное течение;
Re > 2300, то турбулентное течение.
3. Турбулентность
Турбуле́нтность (лат.. turbulentus — бурный, беспорядочный)- явление, заключающееся в том,что, обычно, при увеличении скорости течения жидкости или газа в среде самопроизвольно
образуются многочисленные нелинейные фрактальные волны и обычные, линейные
различных размеров, без наличия внешних, случайных, возмущающих среду сил и/или при их
присутствии. Волны появляются случайно, и их амплитуда меняется хаотически в некотором
интервале. Возникают чаще всего либо на границе, у стенки, и/или при разрушении или
опрокидывании волны. Могут образоваться на струях. Экспериментально турбулентность
можно наблюдать на конце струи пара из электрочайника. Количественные условия перехода
к турбулентности были экспериментально открыты английским физиком и инженером О.
Рейнольдсом в 1883г. при изучении течения воды в трубах.
• До настоящего момента не получено ни одного точного аналитического решения этой
системы уравнений Навье-Стокса для турбулентной области течения.
• Обычно турбулентность наступает при превышении критической величины неким
параметром, например, числом Рейнольдса.
4. Динамические аналогии
При ламинарном и турбулентном течениях работают разные формулы.Отдельные
признаки
Идея
(гипотеза )
аналогии
Отдельные
признаки
(хорошо отработаны)
сходства
Известный
результат
При изучении новой системы мы проводим аналогии
и по подобию к уже известной системе
строим интересующую нас систему.
5. Методы получения критериев подобия.
Метод основан на использовании:а). - теоремы (теоремы Букингема)
б). Метода интегральных аналогов
В основе лежит теория размерности.
A = {A}[A]
[A] - единицы размерности, т.е.
A = {30}[км/час]
Есть единицы основные и произвольные.
6. Пример
ПримерОпределение коэффициента лобового сопротивления.
Дано: Труба с водой (модель);
Характерный размер d;
Значения параметров ; w; .
d
Наименование
Обозначение
Скорость
Характерный признак
Плотность среды
Вязкость динамическая
Сила лобового сопротивления
w
d
F
Размерность
Lt-1
L
ML-3
Mt-1L-1
MLt-2
7. Есть некая функция, которая определяет силу лобового сопротивления как (wa, db, c, λ) = F Определим размерность
Есть некая функция, которая определяет силу лобового сопротивления как(wa, db, c, λ) = F
Определим размерность
([Lt-1]a, [L]b, [ML-3]c, [Mt-1L-1] λ) = [MLt-2]
M: c + λ = 1
L: a + b - 3c - λ = 1
t: - a - λ = -2
Решаем систему уравнений и получаем
c=1-λ
a=2-λ
2-λ+b-3+3λ-λ=1
b=2-λ
Перепишем исходную формулу в несколько ином виде
(w2- λ, d2- λ, 1- λ, λ) = F
т.е. можем записать
F/w2d2 = ( /wd ) = (1/Re)
8. - теорема Всякое полное уравнение физического процесса записанное в определенной системе единиц может быть представлена в
- теоремаВсякое полное уравнение физического процесса записанное в
определенной системе единиц может быть представлена в виде
зависимости между критериями подобия, т.е. безразмерных
соотношений, составленных из входящих в уравнение
переменных и параметров.
f(P1, P2,..., Pi,..., Pk,..., Ps,..., Pm) = 0
1 i k
k+1 s m
f(P1/P01;P2/P02,...;Pi/P0i,...;Pk/P0k,...;Ps/P0s,...;Pm/P0m)=0
Основные и производные единицы. Производные можно выразить
через основные.
Для этого надо:
а) Выбрать те параметры, которые являются независимыми.
Б) Выразить зависимые через независимые. Имеем матрицу
размерностью [m n], в которой число строк больше числа столбцов
(m > n).
Ранг не больше n.
9. Пусть P1,..., Pk - независимые параметры; Pk+1,..., Pm - зависимые параметры. Pk+1,..., Pm. следует выразить через P1,..., Pk
Тогда получимf(1,...,1, 1,..., s-k,..., m-k) = 0
Каждый параметр P выражается в виде
Р = {Р}[Р]
где {Р}- число, [Р] - размерность.
[P1] = [a 1, b 1,..., q 1] = [P01]
[P2] = [a 2, b 2,..., q 2] = [P02]
. . . . . . . . . . .
[Pi] = [a i, b i,..., q i] = [P0i]
. . . . . . . . . . .
[Pk] = [a k, b k,..., q k] = [P0k]
k q
q - количество независимых параметров.
10. [P0,k+1] = k+1{[P01],...,[P0k]} . . . . . . . . . . [P0,s] = s{[P01],...,[P0k]} . . . . . . . . . . [P0,n] =
[P0,k+1] = k+1{[P01],...,[P0k]}. . . . . . . . . .
[P0,s] = s{[P01],...,[P0k]}
. . . . . . . . . .
[P0,n] = n{[P01],...,[P0k]}
Определим зависимости k+1,..., s,..., n
ln[P01] = 1ln[a] + 1ln[b] +...+ 1ln[q]
ln[P02] = 2ln[a] + 2ln[b] +...+ 2ln[q]
. . . . . . . . . . . . . . .
ln[P0k] = kln[a] + kln[b] +...+ kln[q]
1 1 ...
2 2 ...
. . . .
k k ...
1
2 = D
.
k
D - определитель
ln[P01]
ln[P02]
. . .
ln[P0k]
ln[a] = (ln[P01])A11/D(ln[P02])A21/D ... (ln[P0k])Ak1/D
Ak1 - определить получаемый из определителя D путем вычеркивания k-ой строки и 1го столбца.
k
ln[a] = (Ai1/D)ln[P0i]
i=1
11. Пусть k = q ln[a] = ln[b] = . . . . ln[q] = Определяем [a],[b],...,[q] [a] = [P01]A11/D[P02]A21/D...[P0k]Ak1/D [b] = . . .
Пусть k = qln[a] =
ln[b] =
. . . .
ln[q] =
Определяем [a],[b],...,[q]
[a] = [P01]A11/D[P02]A21/D ... [P0k]Ak1/D
[b] =
. . .
[q] =
Полученные выражения подставим в формулы
[P0,k+1] = [P01]D1,k+1/D[P02]D2,k+1/D... [P0k]Dk,k+1/D
. . . . . . . . . .
[P0,s] = [P01]D1,s/D[P02]D2,s/D... [P0k]Dk,s/D
. . . . . . . . . .
[P0,m] = [P01]D1,m/D[P02]D2,m/D... [P0k]Dk, m/D
Di,k+1 - определитель, в котором i-ая строка заменена (k+1) строкой из
формул размерности.
12. k [P0,s] = [P0i]Di,s/D i=1 Di,k+1/D = xi Di,s/D = yi Di,m/D = zi k [P0,k+1] = [P0i]xi = 1 i=1 k [P0,s] = [P0i]yi = s-k
k[P0,s] = [P0i]Di,s/D
i=1
Di,k+1/D = xi
Di,s/D = yi
Di,m/D = zi
k
[P0,k+1] = [P0i]xi = 1
i=1
k
[P0,s] = [P0i]yi = s-k
i=1
k
[P0,m] = [P0i]zi = m-k
i=1
13. Пусть P1 = P01 P2 = P02 . . . . Pk = P0k k k k f(1,...,1, Pk+1/[P0i]xi,...,Ps/[P0i]yi,..., Pm/[P0i]zi) = 0 i=1 i=1 i=1
ПустьP1 = P01
P2 = P02
. . . .
Pk = P0k
k
f(1,...,1,
1 = ( 2,..., m-k)
k
xi
Pk+1/ [P0i] ,...,Ps/ [P0i]yi,...,
i=1
i=1
Pm/ [P0i]zi) = 0
i=1
f(1,...,1, 1,..., s-k,..., m-k)
Реальность
1
2
. . .
m-k
- подобие сил.
k
P1, P2,...,Pk,...,Pm
Модель
1
. . .
m-k
14. Планирование эксперимента; основные понятия
15. Планирование эксперимента Основные понятия. - Активный эксперимент - Пассивный эксперимент Основная идея активного эксперимента
- добиться требуемых свойств, выбираяусловия проведения эксперимента.
1. План эксперимента X
1 j n
1 i N
n - число факторов, N - число экспериментов
xi = (x1i, x2i,..., xni)
x11, x21,..., xn1
X = xji = x12, x22,..., xn2
. . . . . .
x1N, x2N,..., xnN
2. Центр плана
N
X N x
0
1
i 1
i
.
.
3.Центральный план
- это план, в котором центр расположен в начале координат.
. +1, -1
.
16. 4. Область определения. Нормированные переменные. Пусть xj- реальные факторы xj - нормированные факторы -1 xj 1 1 j n n
4. Область определения. Нормированные переменные.Пусть
xj - реальные факторы
xj - нормированные факторы
-1 xj 1
n - факторы
1 j n
Надо определить xj min и xj max
xj = [xj - (xj min + xj max)/2] / [(xj max - xj min)/2]
5. Матрица M = F F
y = a0 + a1x1 + a2x2 +... + anxn
aˆ ( F F ) 1 F ~
y
1 план
1 экспеf = 1 римен1 та
1
17. М - информационная матрица плана X размерности (k+1)(k+1) det(A-I) = 0 где - корни характеристического уравнения. 0 M = 0
М - информационная матрица плана X размерности (k+1) (k+1)det(A- I) = 0
где - корни характеристического уравнения.
0
M=
0
План X, которому соответствует диагональная информационная
матрица, называется ортогональным.
Если при применении МНК какие-либо коэффициенты а оказываются
незначимыми, то в общем случае необходимо произвести перерасчет
коэффициентов для новой модели.
Если использовался критерий ортогональности плана, то замена на 0
любого коэффициента в уравнении модели не изменит оценок других
коэффициентов.
Преимущества ортогонального плана:
а) упрощение вычислений
б) независимые коэффициенты оценок
6. Свойство ротатабельности
План X является ротатабельным, если дисперсия оценки
только от расстояния точки x от центра плана.
зависит
yˆ (
yˆ
2
)
18. Пример Пусть модель y(a,x) = a0 + a1x1 + a2x2 +... + anxn x0 = 0 - центр плана M = 4I3 f(x) = (1, x1, x2) = (1, x1, x2)(1/4)I3
ПримерПусть модель
y(a,x) = a0 + a1x1 + a2x2 +... + anxn
x0 = 0 - центр плана
1 1 1
1 1 1
F
1 1 1
1
1
1
f(x) = (1, x1, x2)
M = 4I3
y2ˆ f ( x)( F F ) 1 f ( x)
1
2
yˆ = (1, x1, x2) (1/4)I3 x1 = (1/4)(1+ x12 + x22) =
x2
= (1/4)(1+r2)
Дисперсия всех равноудаленных точек одинакова.
7. План X называется ненасыщенным , если N > k+1;
насыщенным , если N = k+1
19. 8. Критерий планирования эксперимента. План эксперимента зависит от выбранного критерия. Критерий в основном определяет либо
требования к модели, либо требования кточности.
Кроме критериев ортогональности и ротатабельности назовем
критерии А-оптимальности и Д-оптимальности.
Критерий А-оптимальности требует такого выбора плана X, при
котором матрица C имеет минимальный след (т.е. сумма
диагональных элементов минимальна). Практически это означает
минимизацию средней дисперсии оценок коэффициента а.
Критерий D-оптимальности требует такого расположения точек,
при котором определитель матрицы C минимален.
20. Полный (простой) факторный эксперимент. Факторы - число n (n=3) Уровни (2) - (значения факторов - +1, -1 ) 2n - полный
факторный эксперимент2n-р - дробный эксперимент, где р -число генераторов
Пусть есть факторы x1,x2,x3
x1 x2
1 1
1 -1
-1 1
-1 -1
x3 = x1 x2
1
-1
-1
1
n=3
p=1
23-1=4 (вместо восьми)
21. Планы для квадратичных моделей. Композиционный план второго порядка y = a0 + a1x1 + a2x2 + a3x3 + a4x12 + a5x22 + a6x32 + +
a7x1x2 + a8x1x3 + a9x2x3(n+1) (n+2)/2 = 10 - количество коэффициентов.
x1 x2 x3
1 1 1 1
2 1 1 -1
3 1 -1 1
23 = 8
4 1 -1 -1
5 -1 1 1
6 -1 1 -1
7 -1 -1 1
8 -1 -1 -1
9 0 0 0
- центр плана
10 + 0 0
11 - 0 0
12 0 + 0
- 2n звездных точек
13 0 - 0
Звездные точки обычно выбирают так,
14 0 0 +
15 0 0чтобы
-
обеспечить ортогональность получаемого
22. Понятие рандомизации. Рандомизация заключается в том, что планируемые опыты выписываются в логическом порядке, а затем их
номера случайнымобразом перемешиваются. И именно в таком случайном порядке они и
производятся.
Главные эффекты и взаимодействия.
Фактор А
Код А
Фактор В
Код В
Отклик
A0
x0
B0
y0
z(x0, y0)
A1
x1
B0
y0
z(x1, y0)
A0
x0
B1
y1
z(x0, y1)
A1
x1
B1
y1
z(x1, y1)
Из таблицы нас интересует эффект фактора А (или В) - главный эффект, и
взаимодействие между факторами А и В .
23. Главный эффект фактора А пропорционален разности между: а) средним значением по всем откликам, включающим обработку фактора А
на верхнем уровне (А1).б) средним значением по всем откликам из комбинации
обработок, включающих нижний уровень фактора А (А0).
А = [z(x1, y0) + z(x1, y1)]/2 - [z(x0, y0) + z(x0, y1)]/2
аналогично для В
- определяется какой из факторов весомее.
Эффект взаимодействия между А и В пропорционален разности между:
а) эффектом увеличения А при В, зафиксированном на верхнем уровне;
б) эффектом увеличения А при В, зафиксированном на нижнем уровне.
Пусть
число уровней - 4; число факторов - 3;
Тогда число опытов - 43 = 64.
24. Греко-латинские квадраты. Латинский квадрат. Пусть имеются 3 фактора - P, L, S, и 4 уровня - i = 1, 2, 3, 4. P1 P2 P3 P4 L1 S1
Греко-латинские квадраты.Латинский квадрат.
Пусть имеются 3 фактора - P, L, S, и 4 уровня - i = 1, 2, 3, 4.
L1
S2
L3
L4
P1
S1
S3
S3
S4
P2
S2
S4
S4
S1
P3
S3
S1
S1
S2
P4
S4
В каждой строке и в каждом столбце Si
встречается только один раз.
S2
S3
16 вместо 64.
Греко-латинский квадрат - это то же самое, что латинский, но с
обобщением на 4 фактора.
A
B
C
D
B
C
D
A
C D
D A
A B
B C
L2
25. Метод экспериментальной оптимизации. Эти процедуры применяются при =поиске оптимальных условий либо на объекте, либо на
Метод экспериментальной оптимизации.Эти процедуры применяются при
=поиске
оптимальных условий либо на объекте, либо на вычислительной
машине, т.е. модель нам неизвестна.
f(x1, x2,...,xk)
- функция отклика; x1, x2,...,xk - факторы.
экстремум функции
extr
x1 , x2 ,... xk
x
x
x - оптимальное решение
(k+1)-мерное пространство
Пусть область определения G замкнута и ограничена.
- унимодальная функция.
26. Метод Бокса-Уилсона. Идея метода заключается в использовании метода крутого восхождения в сочетании с последовательно
планируемымфакторным экспериментом для нахождения оценки градиента.
Процедура состоит из нескольких повторяющихся этапов:
- построение факторного эксперимента в окрестностях
некоторой точки;
- вычисление оценки градиента в этой точке по результатам
эксперимента;
- крутое восхождение в этом направлении;
- нахождение максимума функции отклика по этому
направлению.
Допущения:
- функция отклика непрерывна и имеет непрерывные частные
производные на множестве G ;
- функция унимодальная (т.е. экстремум - внутренняя точка).
27. m – номер итерации α влияет на шаг. - оператор Набла Δх нужно подсчитать
mX ( x1m , x2m ,...xkm )
m – номер итерации
m 1 m
X
X grad ( X m )
m
m
(
X
grad
(
X
))
max
α влияет на шаг.
grad ( X m ) ( / x1 ; / x2 ;... / xk )
- оператор Набла
xim 1 xim / xim
Δх нужно подсчитать
28. Пример (на градиентный метод) max f(x) = 4x1 + 2x2 - x12 - x22 +5 = (4, 5) - исходная точка. х2 х1 - общий вид
Пример (на градиентный метод)max f(x) = 4x1 + 2x2 - x12 - x22 +5
= (4, 5) - исходная точка.
x
х2
5
3
1
2
3
4
х1
f ( x 1 ) f ( x 0 )
/ x ( f ( x 1 ) f ( x 0 )) / x
x gradf ( x )
- общий вид
/ gradf ( x 0 ) gradf ( x 1 )
/ f ( x 0 ) f ( x1 )
29. f/x1 = 4 - 2x1 f/x2 = 2 - 2x2 f(x0) = (4-24, 2-25) = (-4, -8) - градиент в точке x0 Вторая итерация т.е. точка - решение
f/ x1 = 4 - 2x1f/ x2 = 2 - 2x2
f(x0) = (4-2 4, 2-2 5) = (-4, -8)
- градиент в точке x0
x 1 x 0 gradf ( x 0 ) (4 4 ,5 8 )
gradf ( x 1 ) [4 2(4 4 ), 2 2(5 8 )] [ 4 8 , 8 16 ]
d / d f ( x 0 ) f ( x 1 ) [( 4 8 ) ( 4) ( 8 16 ) 8] 80 160 0
0 0,5
x 1 (4 4 0,5;5 8 0,5) (2;1)
Вторая итерация
x 1 (2;1)
gradf ( x 1 ) [( 4 2 x1 ), (2 2 x2 )] (4 2 2,2 2 1) (0,0)
f ( x 1 ) 8 2 4 1 5 10
т.е. точка
x1 -
решение задачи
30. Оценивание градиента. Если функция (x1, x2,..., xk), где x1, x2,..., xk - размерные величины, то перейдем к безразмерному
Оценивание градиента.Если функция (x1, x2,..., xk),
где x1, x2,..., xk - размерные величины, то перейдем к безразмерному
виду:
f(x1, x2,..., xk),
где x1, x2,..., xk - безразмерные величины.
Разложим эту функцию в ряд Тейлора в точке 0.
k
f ( x1 , x2 ,...xk ) f ( x10 , x20 ,...xk0 ) 0 ( f / x i ) xi
i 1
1 k k 2
( f / xi x j ) xi x j 0 ...
2 i 1 j 1
Для линейной зависимости.
где
f(x1, x2,..., xk) = a0 + a1x1 + a2x2 +...+ akxk
ai = f/ xi
a0 = f(x10, x20,..., xk0)0
i = 1…k i 0
31. x2 x1 - из регрессионной модели - из разложения в ряд Тейлора Проведя факторный эксперимент и рассчитав коэффициент линейной
x2x 3 max
x
1
x2
x0
aˆ CF ~
y
a0
a
1
...
ak
x1
a1
a
a 2
...
ak
- из регрессионной модели
- из разложения в ряд Тейлора
Проведя факторный эксперимент и рассчитав коэффициент линейной
множественной регрессионной модели, мы получаем возможность
оценить компоненты градиента.
32. Метод интегральных аналогов. Для получения критериев подобия по методу интегральных аналогов необходимо знать уравнения системы
или процесса.Если все члены уравнения разделить на один из них, то получим
уравнение в безразмерной форме (Фурье - все члены уравнения
имеют одну и ту же размерность).
Пример
Уравнение Навье-Стокса.
V- скорость потока в точке.
F - объемная или массовая сила
Р - давление
- плотность жидкости
- кинетическая вязкость
- лапласиан или дифференциальный оператор второго порядка
- оператор набла
=
- скалярное произведение
33.
uu
u
u
1 p
2u 2u 2u
u v w Fx
[ 2 2 2 ]
dt
dx
dy
dz
x
x
y
z
2
2
v
v
v
v
1 p
v v 2v
u v w Fy
[ 2 2 2 ]
dt
dx
dy
dz
y
x
y
z
w
w
w
w
1 p
2w 2w 2w
u
v
w
Fz
[ 2 2 2 ]
dt
dx
dy
dz
z
x
y
z
r ( x , y , z)
r L 0 r1
V 0 V1
P 0 P1
F g 0 F1
t F0 t1
V0 V0
( Vgrad)V
( V1 grad)V1
L0
P0
gradP
gradP1
L0
P0
V 2 V1
L0 2
V0 V1 V0
V0
1 P0
( V grad) V1 g 0 F1
gradP1 2 V1
T0 dt 1 L 0 1
L0
L0
34. Пренебрегаем индексом 1; Разделим члены уравнения на - число подобия Струхаля - число подобия Фруда - число подобия Эйлера -
Пренебрегаем индексом 1; Разделим члены уравнения наg L
L 0 V
1 P0
1
( Vgrad) V 0 2 0 F
gradP
V
T0 V0 dt 1
V02
L 0 V0
V0
L0
St
T0 V0
g0L0
V02
V02
L0
- число подобия Струхаля
1
- число подобия Фруда
F2
1 P0
Eu
V02
1
L 0 V0
Re
- число подобия Эйлера
- число подобия Рейнольдса
V
1
1
St
( Vgrad) V
F Eu( gradP )
V
dt 1
F2
Re
St
F2
объемная _ ( массовая )_ сила
сила _ инерции
Re
вязкостные _ силы
сила _ инер ции
сила _ неустановившегося_ движения
сила _ инер ции
сила _ давления
Eu
сила _ инер ции
35. Фракталы. Размерность Хаусдорфа-Безиковича.
36. Введение
Автор понятия и первых работ по фрактальной геометрии Бенуа Мандельброт
Нестрогое определение: Фрактал - это структура, состоящая из частей,
которые в каком-то смысле подобны целому.
Большинство структур, которые мы можем вычленить из реальных объектов,
обладают свойством геометрической регулярности или самоподобием, что
проявляется в их инвариантности по отношению к масштабу
37. IFS (Iterated Functions Systems)
• Kern:• Mandel / Julia
xk+1= Fx (xk, yk)
yk+1= Fy (xk, yk)
zk+1=zk2+z0 (z0=c0)
38. Примеры фракталов
39. 3D
40. Неформально о размерностях
• Топологическая размерность:– принимает исключительно целые значения
– размерность одноточечного множества
равна нулю, отрезка и прямой - единица,
размерность n-мерного куба равна n
• Проблемы топологической размерности
• Размерность Хаусдорфа-Безиковича –
обобщение, геометрический смысл