Похожие презентации:
Линейная функция. Алгебра, 7 класс
1. Линейная функция.
Знаменская гимназияСергеенкова С. Ю.
Алгебра, 7 класс.
2.
1. Построение графика линейной функции.Виды линейных функций.
2. Свойства функции, связанные с угловым
коэффициентом.
3. Решение неравенств, связанных с
положительным или отрицательным
значением функции.
4. Нахождение наибольшего и наименьшего
значения функции на отрезке.
3. у = - 2х + 3 – линейная функция. Графиком линейной функции является прямая, для построения прямой нужно иметь две точки
у = - 2х + 3 – линейная функция.Графиком линейной функции является прямая,
для построения прямой нужно иметь двеу точки
Результаты запишем в таблицу: после того,
как возьмём любые значения Х, надо
вычислить соответствующие значения У.
ПОЛУЧАЕМ:
х
у
0 2
3 -1
У= - 2х+3
3
выбираем
сами
Если х = 0, то у = - 2·0 + 3 = 3.
Если х=2, то у = -2·2+3 = - 4+3= -1.
Точки (0;3) и (2; -1) отметим
на координатной плоскости и
проведем через них прямую.
1
0
1
-1
2
х
4. Ученик допустил ошибку при построении графика функции. На каком рисунке?
1. y=х+22. y=1,5х
3. y=-х-1
y
y
y
3
3
2
1
x
1
x
3x
5. На каком рисунке изображён график линейной функции y=kx? Ответ объяснить.
1y
y
y
2
3
x
x
x
y
y
4
5
x
x
6.
На каком рисунке коэффициент kотрицателен?
y
1
2
y
3
y
x
x
x
4
5
y
x
y
x
7.
Выберите линейную функцию, график которой изображенна рисунке
у= х-2
у=х–1
у = 0,5х
у=х+2
у=-х+1
у = х +2
у=2–х
у=-х-1
у = 2х
Молодец!
Подумай!
8.
С помощью графика линейной функции у = 2х - 6 ответитьна вопросы:
а) при каком значении х будет у = 0 ?
б) при каких значениях х будет у 0 ?
в) при каких значениях х будет у 0 ?
а) у = 0 при х = 3
б) у 0 при х 3
в) у 0 при х 3
Если х 3 , то прямая расположена выше оси
х, значит, ординаты соответствующих точек
прямой положительны
Если х 3, то прямая расположена ниже оси
х, значит, ординаты соответствующих точек
прямой отрицательны
у
1
0
-6
1
3
х
9.
АБ
4
4
-1
3
Найдите наибольшее
и наименьшее
значения данных
функций на
отрезках:
А) [- 1; 3]
Б) [ - 4; - 3] и [- 4; 2] и
[ - 3; 2]
3
-4 -3
2
-1
-2
-4
Существует два метода решения задач такого типа:
1). Графический – он представлен на рисунках;
2). Алгебраический – надо подставить в формулу функции значения Х равные концам отрезка и
вычислить значение У, затем из двух результатов выбрать наибольшее и наименьшее.
ОТВЕТ: А) наибольшее значение функции = 4, наименьшее значение функции = - 4
Б) 1. наибольшее = -1, наименьшее = -2.
2. наибольшее = 4, наименьшее = -2.
3. наибольшее = 4, наименьшее = -1.
10.
Задача для самостоятельного решения:1). Найдите наибольшее и наименьшее значения
функции у = - 3х + 1 на отрезке [-3; 5].
2). Для неё найдите при каких значениях Х функция
принимает:
а) положительные значения,
б) отрицательные значения.
РЕШЕНИЕ: 1). Составим таблицу значений для функции у=-3х+1. Так как
к = -3<0, то это убывающая функция. Поэтому на левой границе отрезка
У будет наибольшим, а на правой границе отрезка У будет наименьшим.
Значит возьмём для Х значения концов отрезка.
Х
-3
5
У
10
-14
Из полученных значений надо выбрать наибольшее и наименьшее.
У наибольшее = 10,
У наименьшее = -14.
11.
2). Найдем при каких значениях функция принимаетположительные значения.
Сначала найдём в какой точке график пересекает ось Ох.