Похожие презентации:
Компьютерная инженерная графика. Тема занятия: «Введение в начертательную геометрию»
1. САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ
КАФЕДРА ПРИКЛАДНОЙ И КОМПЬЮТЕРНОЙ ОПТИКИДисциплина:
«Компьютерная инженерная графика»
Тема занятия:
«Введение в начертательную геометрию»
Санкт-Петербург, 2012г.
2. Проецирование
Проецирование – получение изображения на плоскости с помощьюпроецирующих лучей (световых или зрительных),
исходящих из определенной точки пространства (центра
проецирования), проходящих через точки изображаемого
предмета и отображаемых на плоскости в виде точек и
линий
Плоскость, на которую проецируют предмет, называется плоскостью
проекций
В зависимости от направления проецирующих лучей по отношению к
плоскости проекций выделяют два метода проецирования: центральное и
параллельное.
2
3. Метод центрального проецирования
Суть методаВ
пространстве
выбирают
произвольную точку S (см. рис) в
качестве центра проецирования и
плоскость Пi, не проходящая через
точку
S, в качестве плоскости
проекций (картинной плоскости).
Чтобы спроецировать точку А на
плоскость
Пi,
через
центр
проецирования S проводят луч SА
до его пересечения с плоскостью Пi
в точке Аi. Точку Аi принято называть
центральной проекцией точки А, а
луч SА - проецирующим лучом.
3
4. Метод центрального проецирования Примеры
Центральное проецированиилинии
Центральное проецирование
поверхности
4
5. Метод параллельного проецирования
Суть методаЦентр проецирования удален в
бесконечность, при этом проецирующие
лучи можно рассматривать как
параллельные проецирующие прямые.
Положение проецирующих прямых
относительно плоскости проекций
определяется направлением
проецирования S (см.рис). В этом случае
полученное изображение называют
параллельной проекцией объекта.
При параллельном проецировании сохраняются свойства центрального и
добавляются следующие:
- проекции параллельных прямых параллельны между собой;
- отношение отрезков прямой равно отношению их проекций;
- отношение отрезков двух параллельных прямых равно отношению их
проекций.
5
6. Метод Монжа
При проецировании на одну плоскостьпроекции
теряется
пространственная
размерность предмета.
При
центральном
проецировании,
когда линии предмета совпадают с
проецирующими линиями, размерность
искажается и пропадает.
В случае параллельного проецирования
линии предмета, совпадающие с линиями
проецирования, превращаются в точки.
Для решения этих проблем при
создании чертежей известный французский
ученый и инженер Гаспар Монж предложил
метод
построения
изображений,
основанный
на
прямоугольном
проецировании предмета на две взаимноперпендикулярные плоскости (см.рис.).
6
7. Метод Монжа
Чтобы получить плоский чертеж,состоящий
из
указанных
проекций,
плоскость П1 совмещают вращением вокруг
оси x12 с плоскостью П2. Проекционный
чертеж, на котором плоскости проекций со
всем тем, что на них изображено,
совмещенные определенным образом одна
с другой, называется эпюром Монжа
(франц. Epure – чертеж.) или комплексным
чертежом.
Модель Монжа
Эпюр Монжа
7
8. Геометрические элементы предмета
точка — бесконечно малая величина, не имеющая размера и имеющаятри координаты размещения в пространстве;
линия, состоящая из последовательности бесчисленного множества
точек, не имеющих размера и подчиняющихся определенному закону
распространения в пространстве;
поверхность, частным случаем которой является плоскость, состоящая
из совокупности множества точек, размещенных в пространстве по
определенному закону распределения и не имеющая толщины.
8
9. Точка в ортогональной системе двух плоскостей проекций
При построении проекции необходимо помнить, что ортогональной проекцией точкина плоскость является основание перпендикуляра, опущенного из данной точки на эту
плоскость. На рисунке показана точка А и ее ортогональные проекции А1 и А2, которые
называют соответственно горизонтальной и фронтальной проекциями.
Проекции точки всегда расположены на прямой, перпендикулярной оси x12 и
пересекающей эту ось в точке Аx.
Прямые линии, соединяющие разноименные проекции точки на эпюре, называются
линиями проекционной связи.
9
10. Точка в ортогональной системе трех плоскостей проекций
Модель трех плоскостей проекций показана на рисунке. Третья плоскость,перпендикулярная и П1, и П2, обозначается как П3 и называется профильной.
Проекции точек на эту плоскость обозначаются прописными буквами латинского
алфавита или цифрами с индексом 3.
10
11. Взаимное расположение точек
На рисунке представлены точки А, В, С, D, у которых одна из координат совпадает, а две другиеотличаются, их взаимное расположение можно оценить по удаленности к плоскостям проекций
следующим образом:
– YА=YВ=YD, то точки А, В и D равноудалены от плоскости П2 и их горизонтальные и
профильные проекции расположены, соответственно, на прямых А1В1//x12 и А3В3//z. Геометрическим
местом таких точек служит плоскость, параллельная П2;
– ZА=ZВ=ZС, то точки А, В и С равноудалены от плоскости П1 и их фронтальные и профильные
проекции расположены, соответственно, на прямых А2В2//x12 и А3С3//y. Геометрическим местом таких
точек служит плоскость, параллельная П1;
– XА=XC=XD, то точки А, C и D равноудалены от плоскости П3 и их горизонтальные и
фронтальные проекции расположены, соответственно, на прямых А1C1// y и А2D2//z . Геометрическим
местом таких точек служит плоскость, параллельная П3.
Если у точек равны две одноименные координаты, то они называются конкурирующими.
Конкурирующие точки расположены на одной проецирующей прямой. На рисунке даны три пары таких
точек.
11
12. Прямая линия. Положение прямой линии относительно плоскостей проекций
Прямая не параллельная ни одной плоскости проекций называется прямойобщего положения
12
13. Прямая линия. Положение прямой линии относительно плоскостей проекций
Прямые параллельные горизонтальной плоскости проекций называютсягоризонтальными прямыми или горизонталями. Для любой пары точек
горизонтали должно быть справедливо равенство
zA=zB
A2B2//0x; A3B3//0y
xA–xB≠0, yA–yB≠0, zA–zB=0.
13
14. Прямая линия. Положение прямой линии относительно плоскостей проекций
Прямые параллельные фронтальной плоскости проекций называютсяфронтальными прямыми или фронталями.
yA=yB A1B1//0x, A3B3//0z
xA–xB≠0, yA–yB=0, zA–zB≠0.
14
15. Прямая линия. Положение прямой линии относительно плоскостей проекций
Прямые параллельные профильной плоскости проекций называютсяпрофильными прямыми .
xA=xB A1B1//0y, A2B2//0z xA–xB=0, yA–yB≠0, zA–zB≠0.
15
16. Прямая линия. Положение прямой линии относительно плоскостей проекций
Прямые перпендикулярные плоскостям проекций, занимают частное положение впространстве и называются проецирующими. Прямая перпендикулярная одной плоскости
проекций, параллельна двум другим. В зависимости от того, какой плоскости проекций
перпендикулярна исследуемая прямая, различают:
Фронтально проецирующая прямая - АВ
Профильно проецирующая прямая - АВ
Горизонтально проецирующая прямая - АВ
16
17. Плоскость. Способы задания плоскостей
Тремя точками, не лежащими на одной прямой линии17
18. Плоскость. Способы задания плоскостей
Прямой линией и точкой, не принадлежащей этой прямой18
19. Плоскость. Способы задания плоскостей
Двумя пересекающимися прямыми19
20. Плоскость. Способы задания плоскостей
Двумя параллельными прямыми20
21. Положение плоскости относительно плоскостей проекций
Горизонтальная плоскость - плоскость,Параллельная горизонтальной плоскости проекций
(a//П1) - (a^П2,a^П3). Геометрический объект,
Принадлежащий этой плоскости проецируется на
плоскость П1 без искажения, а на плоскости П2 и П3 в
прямые – следы плоскости aП2 и aП3
Фронтальная плоскость - плоскость, параллельная
фронтальной плоскости проекций (a//П2), (a^П1, a^П3).
Геометрический объект, принадлежащий этой плоскости
проецируется на плоскость П2 без искажения, а на
плоскости П1 и П3 в прямые - следы плоскости aП1 и
aП3
Профильная плоскость - плоскость,
параллельная профильной плоскости проекций
(a//П3), (a^П1, a^П2). Геометрический объект,
принадлежащий этой плоскости проецируется на
плоскость П3 без искажения, а на плоскости П1
и П2 в прямые - следы плоскости aП1 и aП2
21
22. Способы преобразования чертежа
Использование частных положений прямых линий и плоских фигур относительноплоскостей проекций значительно упрощает построение чертежа и позволяет
отобразить натуральные размеры прямых линий, плоских фигур, расположенных
на одной плоскости проекций, и расстояний между ними. Для такого
преобразования чертежа используют:
1). Введение дополнительных плоскостей проекций таким образом, чтобы прямая
линия или плоская фигура, не изменяя своего положения в пространстве,
оказалась в каком-либо частном положении в новой системе плоскостей
проекций — способ перемены плоскостей проекций;
2). Изменение положения прямой линии или плоской фигуры посредством
поворота вокруг некоторой оси таким образом, чтобы прямая или плоская фигура
оказалась в частном положении относительно неизменной системы плоскостей
проекций — способ вращения.
Преобразование чертежа (для достижения необходимого результата) при
определении натуральных размеров отрезков и углов может осуществляться
многократно одним или разными способами.
22
23. Способы преобразования чертежа. Метод вращения вокруг оси, перпендикулярной плоскости проекций
Траектория - дуга окружности, центр которой находится на оси перпендикулярнойплоскости проекций. Для определения натуральной величины отрезка прямой общего
положения АВ, выберем ось вращения перпендикулярную горизонтальной плоскости
проекций и проходящую через В. Повернем отрезок так, чтобы он стал параллелен
фронтальной плоскости проекций (горизонтальная проекция отрезка параллельна оси x).
При этом точка А переместиться в А*, а точка В не изменит своего положения.
Положение проекции А*2 находится на пересечении фронтальной проекции траектории
перемещения точки А (прямая линия параллельная оси x) и линии связи проведенной из
проекции А*1. Полученная проекция отрезка В2 А*2 определяет его
действительные размеры.
23
24. Способы преобразования чертежа. Метод замены плоскостей проекций
Изменение взаимного положения изучаемого объекта и плоскостей проекций достигается путемзамены одной из плоскостей П1 или П2 новой плоскостями П4. Новая плоскость всегда выбирается
перпендикулярно оставшейся плоскости проекций.
Для решения некоторых задач может потребоваться двойная замены плоскостей проекций.
Последовательный
переход от одной системы плоскостей проекций к другой необходимо
осуществлять, выполняя следующее правило: расстояние от новой проекции точки до новой оси
должно равняться расстоянию от заменяемой проекции точки до заменяемой оси.
Выберем новую плоскость проекций П4, параллельно отрезку АВ и перпендикулярно плоскости П1.
Введением новой плоскости, переходим из системы плоскостей П1П2 в систему П1П4 , причем в
новой системе плоскостей проекция отрезка А4 В4 будет натуральной величиной отрезка АВ.
24
25. Дополнительная информация
Более подробно ознакомиться с материалом можно:1.В.М. Дягтерев, В.П. Затыльникова. Инженерная и компьютерная графика.
Главы 1-4 (стр. 3-36)
2. Мультимедийный учебник по начертательной геометрии
25
26. Задание
По координатам пяти точек необходимо построить комплексный чертежтреугольника АВС и прямой МN. Найти точку К пересечения прямой с
плоскостью. Определить видимость прямой по отношению непрозрачной
плоскости, методом конкурирующих точек. Определить методом вращения
вокруг оси перпендикулярной плоскости проекций натуральную величину
отрезка МК и методом замены плоскостей проекций - натуральную величину
треугольника АВС.
26
27. Пример выполнения работы
Даны координатыточек
27
28. Пример выполнения работы
Строим ось Х, обозначаемплоскости
28
29. Пример выполнения работы
Строим точку А, откладываясоответствующие координаты
по оси Х, Y, Z. Ось Y «стремится»
вниз по вертикали, ось Z – вверх.
29
30. Пример выполнения работы
Аналогично строимоставшиеся точки
30
31. Пример выполнения работы
3132. Пример выполнения работы
3233. Пример выполнения работы
Соединяем точки таким образом,чтобы получилась плоскость АВС
и отрезок MN
33
34. Пример выполнения работы
Через проекцию отрезка M2N2проводим прямую
34
35. Пример выполнения работы
Определяем точки скрещиванияпрямой и плоскости – 1 и 2
35
36. Пример выполнения работы
3637. Пример выполнения работы
Строим проекции точек 1 и 2на плоскости П1. Проводим через
эти точки отрезок, который будет
совпадать с проекцией прямой a на
плоскости П1.
Определяем точку К – точка
пересечения отрезка 12 и отрезка M1N1.
37
38. Пример выполнения работы
Определяем проекцию точки Кна плоскости П2
38
39. Пример выполнения работы
Пусть точка 22 совпадает с точкой 32.(вспоминаем про конкурирующие точки).
Строим проекцию точки 3 на плоскости П1.
Обращаем внимание на то, что если точка
принадлежит прямой, то и проекции этой
точки также принадлежат соответствующим
проекциям прямой
39
40. Пример выполнения работы
По методу конкурирующих точекопределяем видимость
отрезка M2N2
40
41. Пример выполнения работы
Аналогично для точек 4 и 5.41
42. Пример выполнения работы
Определяем видимость отрезкаM1N1
42
43. Пример выполнения работы
Используя метод вращения вокругоси, определяем натуральную
величину заданного отрезка – MK.
Пусть ось в (.)К, тогда вращаем отрезок
до тех пор, пока прямая не станет
параллельна оси х. Получаем новую
проекцию отрезка MK
43
44. Пример выполнения работы
Строим проекцию отрезка МК наплоскости П1.
44
45. Пример выполнения работы
Проекция отрезка М’1К1 – естьнатуральная величина отрезка МК
45
46. Пример выполнения работы
Определяем натуральнуюплощадь плоскости АВС по методу
замены плоскостей
Через одну из вершин проекции А2В2С2
проводим горизонталь h2
46
47. Пример выполнения работы
Строим проекцию горизонталина плоскости П1
47
48. Пример выполнения работы
Вводим новую плоскость П4 такимобразом, чтобы новая ось х была
перпендикулярна проекции
горизонтали h1
48
49. Пример выполнения работы
Строим на плоскости П4проекции точек А, В, С, сохраняя
их координаты по оси Z.
49
50. Пример выполнения работы
Соединяем точки. Если все правильноделали, треугольник АВС должен
проецироваться в прямую
50
51. Пример выполнения работы
Вводим новую плоскость П5, длякоторой ось Х будет параллельно
Проекции А4В4С4
51
52. Пример выполнения работы
Аналогично строимпроекцию
треугольника АВС
на плоскости П5
52
53. Пример выполнения работы
Полученная проекция будет иметь площадь,равную площади треугольника АВС
53