Похожие презентации:
Первообразная функции и неопределенный интеграл
1.
ПЕРВООБРАЗНАЯ ФУНКЦИИИ
НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
2. Понятие первообразной
ПОНЯТИЕ ПЕРВООБРАЗНОЙФункцию F(x) называют первообразной для
функции f(x) на интервале (a; b), если на нем
производная функции F(x) равна f(x):
F ( x ) f ( x )
Операцию, обратную дифференцированию
называют интегрированием.
3.
ПРИМЕРЫ1. f(x) = 2x; F(x) = x2
F (x)= (x2) = 2x = f(x)
2. f(x) = – sin x; F(x) = сos x
F (x)= (cos x) = – sin x = f(x)
3. f(x) = 6x2 + 4; F(x) = 2x3 + 4x
F (x)= (2x3 + 4x) = 6x2 + 4 = f(x)
4. f(x) = 1/cos2 x; F(x) = tg x
F (x)= (tg x) = 1/cos2 x= f(x)
4. Неопределенный интеграл
НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛНеопределенным интегралом от непрерывной
на интервале (a; b) функции f(x) называют
любую ее первообразную функцию.
f
(
x
)
dx
F
(
x
)
c
где С – произвольная постоянная (const).
5.
ПРИМЕРЫ1. Adx Ax C ; Ax C A
x
x
x
x
2. e dx e С; e C e
cos x C
3. sin xdx cos x С ;
4
x
4. x dx
С;
4
3
sin x
x
1
3
3
С 4x x
4
4
1
5.
dx tg x C ;
2
cos x
4
tg x C
1
2
cos x
6. Таблица первообразных
ТАБЛИЦА ПЕРВООБРАЗНЫХF(x)
x n 1
C
n 1
2x x
C
3
sin x C
cos x C
tgx C
ctgx C
f(x)
x
n
х
cos x
sin x
1
сos 2 x
1
sin2 x
F(x)
f(x)
ax C
ax
lna
1
C
x
ln x
ex C
ex
C
Cx
loga x C
1
x lna
arcsinx C
1
1 x2
7.
ТРИ ПРАВИЛА НАХОЖДЕНИЯПЕРВООБРАЗНЫХ
1º Если F(x) есть первообразная для f(x), а G(x) –
первообразная для g(x), то F(x) + G(x) есть
первообразная для f(x) + g(x).
2º Если F(x) есть первообразная для f(x), а k –
постоянная, то функция kF(x) есть первообразная
для kf(х).
3º Если F(x) есть первообразная для f(x), а k и b –
1
постоянные, причем k ≠ 0, то функция
F(kx + b)
k
есть первообразная для f(kx + b).
8.
9.
https://youtu.be/Q4Flf0bQ5QA10.
ДОМАШНЯЯ РАБОТАРешить в тетради: Упражнение 983 (1,2), 984 (1,2), 987 (1,2), 988 (1-6).
Сохранить файл в формате PDF и загрузить на сайт в своем профиле.