Похожие презентации:
Преобразование выражения в многочлен стандартного вида. Подготовка к контрольной работе
1.
2.
№ 29.1(в,г) Выполните деление многочлена на одночлен:в) (44у + 22) : 11 = 4у + 2
г) (– 15 – 5у) : (– 5) = 3 + у
№ 29.2(в,г)
в) (– m – mn) : m = – 1 – n
г) (– с + сd) : (– с) = 1 – d
3.
№ 29.3(в,г) Выполните деление многочлена на одночлен:в) (с2 – 2сd) : с = с – 2d
г) (р4 – р3q) : р3 = р – q
№ 29.4(в,г)
в) (– 3,5m2n – 0,2mn) : (mn) = – 3,5m – 0,2
1 1 2
1 3
1
г) ху + х у : ( ху) = + х
2 3
3
2
4.
№ 29.5(в,г) Выполните деление многочлена на одночлен:в) (2аb + 6а2b2 – 4b2) : (– 2b) = – а – 3a2b + 2b
г)
(–1а5b3
+
3а6b2)
:
(4a4b2)
1
3 2
= ab + a
4
4
5.
№ 29.6(а) Найдите значение алгебраического выражения:(18а4 – 27а3) : (9а2) – 10а3 : (5а) при а = – 8
2а2 – 3а – 2а2 = – 3а
если а = – 8, то – 3а = – 3 · (– 8) = 24
6.
№ 29.9(б) Выполните почленное деление числителядроби на знаменатель:
132n p 44n p + 110n p
=
22np
3
2
2
3
2
4
132n 3 p2 44n2 p3 110n2 p4
=
+
=
22np
22np
22np
= 6n2p – 2np2 + 5np3
7.
04.09.2020К л а с с н а я р а б о т а.
Подготовка к контрольной
работе.
8.
1. Составьте многочлен р(х) = р1(х) + 2р2(х) – 3р3(х) изапишите его в стандартном виде, если:
р1(х) = 4х2 – 3; р2(х) = – 2х + 5; р3 = – 2х2 – 3х.
(4х2 – 3) + 2(– 2х + 5) – 3(– 2х2 – 3х) =
= 4х2 – 3 – 4х + 10 + 6х2 + 9х =
= 10х2 + 5х + 7
9.
2. Преобразуйте заданное выражение в многочленстандартного вида:
2 2 3
7
2
3
а) х у 14 х ху +7 у =
7
2
= – 4х3у3 + х3у5 – 2х2у6
б) (b + 10)(2b – 4) =2b2 – 4b + 20b – 40 =
= 2b2 + 16b – 40
10.
3. Упростите выражение, используя формулысокращённого умножения:
(I + II)2 = I2+ 2·I·II + II2
(m + 3n)2 – (m + 3n)(m – 3n) =
(I + II)(I – II) = I2 – II2
= (m2 + 9n2 + 6mn) – (m2 – 9n2) =
= m2 + 9n2 + 6mn – m2 + 9n2 = 18n2 + 6mn
11.
4. Даны три числа, из которых каждое следующее на 3 большепредыдущего. Найдите эти числа, если известно, что произведение меньшего и большего на 54 меньше произведения
большего и среднего.
I.
Число
1
2
3
x
x+3
x+6
x(x + 6) + 54 = (x + 3)(x + 6)
12.
II.x(x + 6) + 54 = (x + 3)(x + 6)
x2 + 6х + 54 = x2 + 6x + 3х + 18
x2 + 6х – x2 – 9x = 18 – 54
– 3x = – 36
x = 12
III. Ответ: 12, 15, 18
13.
5. Докажите, что значение выражения (5m – 2)(5m ++ 2) – (5m – 4)2 – 40m не зависит от значения переменной.
(5m – 2)(5m + 2) – (5m – 4)2 – 40m =
= (25m2 – 4) – (25m2 + 16 – 40m) – 40m =
= 25m2 – 4 – 25m2 – 16 + 40m – 40m = – 20
ч.т.д.