Похожие презентации:
Катушки со сталью в цепи синусоидального тока
1. Катушки со сталью в цепи синусоидального тока
Для увеличения индуктивности катушек их располагают насердечниках из ферромагнитного материала, обычно из листовой
электротехнической стали. Анализ процессов, протекающих в
цепи со сталью, включенной на синусоидальное напряжение,
достаточно сложен, что объясняется следующими причинами:
1. Магнитная проницаемость ферромагнитных материалов ,
поток Ф не пропорционален намагничивающему току, а значит
индуктивность катушки L меняется с изменение тока. Поэтому в
расчете приходится использовать общее
d
выражение закона электромагнитной индукции: e , а
dt
di
не e L , справедливого для линейных электрических цепей.
dt
2.
2. При протекании по катушке переменного тока в стальномсердечнике обязательно появятся потери, обусловленные
гистерезисом и вихревыми токами.
3. Из-за нелинейности цепи ток в катушке при приложенном
синусоидальном напряжении будет несинусоидальным, и,
наоборот, при синусоидальном токе напряжение на катушке
будет несинусоидальным.
3. Потери в сердечниках из ферромагнитного материала
Потери энергии в сердечниках при периодическомизменении магнитного потока складываются из потерь на
гистерезис и на вихревые токи. Изменяющийся в сердечнике
магнитный поток создает в замкнутом контуре,
перпендикулярном магнитному потоку ЭДС
dФ
e w
dt
под действием которой возникают токи, названные
вихревыми. Величина тока тем больше, чем меньше
сопротивление контура. Для уменьшения вихревых токов
увеличивают сопротивление контура, выполняя сердечник из
тонких листов ферромагнитного материала, изолированных
друг от друга.
4.
хdx
l
h
Обратимся к рис. 5.1, на
котором показана трубка
вихревого тока, имеющая
сечение ldx и длину
приблизительно 2h. Активная
проводимость вдоль этой
трубки обратна его активному
сопротивлению. Имеем
l dx
dg x
2h
Действующее значение ЭДС,
индуктируемой вдоль трубки,
равно:
d
E x 4k ф f Ф mx 4k ф f 2x h B m Рис. 5.1. Трубка вихревого тока
где kф – коэффициент формы
кривой ЭДС.
5.
Следовательно, потери внутри трубки равныdP E 2x dg x 32h l k ф2 f 2 B m2 x 2 dx
Интегрируя от 0 до d/2, получаем потери на вихревые токи в
листе:
4
Pв k ф2 d 2 f 2 B m2 V
3
где V h l d – объем листа.
Потери на гистерезис появляются при перемагничивании
ферромагнитного вещества.
Предположим, что намагничиваемое тело из
ферромагнитного вещества имеет форму тонкого кольца,
длина которого l и поперечное сечение s. Кольцо
намагничивается током i в обмотке, имеющей w витков,
равномерно расположенных по длине кольца.
6.
Элементарная работа внешнего источника ЭДС, связанная сизменением d потокосцепления = wФ с обмоткой
d
dA i
dt i d i w dФ
dt
Отнесенная к единице объема, эта работа равна:
dA i w Ф
dA
d H dB
l s
l
s
Проинтегрировав последнее выражение по петле
гистерезиса, получим
A WГ H dB s m H m B
где mH и mB – масштабы по оси Н и оси В.
7.
Работа A идет на необратимые процессы, связанные сперемагничиванием вещества.
Приближенно для определения удельных потерь на
гистерезис можно воспользоваться формулой:
WГ B
2
m
где Вm – амплитуда магнитной индукции, h – коэффициент,
зависящий от свойств материала сердечника– коэффициент,
зависящий от свойств материала сердечника.
Таким образом, суммарная мощность потерь в сердечнике
равна
Р ф ер Р Г Р В f B m2 V f 2 B m2 V
8. Связь напряжения, приложенного к катушке, с током в ней
Примем сначала некоторые допущения:• пренебрежем активным сопротивлением провода катушки;
• предположим, что отсутствуют потри в стали (отсутствует
петля гистерезиса);
• пренебрежем потокосцеплением рассеяния (будем считать,
что все витки пронизываются одним и тем же магнитным
потоком Ф, проходящем по сердечнику, т.е.
d
dФ
w
dt
dt
(5.1)
9.
Примем, что напряжение, приложенное к катушкеu U m sin( t )
(5.2)
При этих условиях напряжение, приложенное к катушке,
компенсируется ЭДС самоиндукции, возникающей в ней
dФ
u e w
dt
и магнитный поток
Um
Um
Ф
sin( t ) dt
cos( t ) Ф m sin( t )
w
w
2
(5.3)
Магнитный поток отстает от напряжения на 900, а ЭДС
e w
dФ
w Ф m sin( t ) E m sin( t )
dt
2
2
10.
Из (5.2) и (5.3) следует – если приложенное напряжение ккатушке синусоидальное, то и поток синусоидальный.
(5.2) и (5.3) справедливы только для синусоидального
приложенного напряжения. Действующее значение
напряжения
U E
w Фm
2 f w Фm
4,44 f w Ф m
(5.5)
По кривой потока Ф(t) нетрудно построить кривую тока i(t).
Это построение показано на рис. 5.2.
2
2
11.
Ф (Вб)Ф = f(UM)
t1
t2 t3 t4
t1
t
t5
0
It2, It4
UM (A)
It3
t2 t3
t4
t5
t
Рис. 5.2. Построение кривой i(t) в зависимости от
синусоидального потока
12.
Построение производится по заданной вебер-ампернойхарактеристики магнитной цепи. Чтобы не загромождать
рисунок, построение кривой тока i(t) показано только для
положительных значений. Полусинусоида потока Ф(t)
изображена слева. Полусинусоида тока направлена по оси
времени от нуля вниз. Задаваясь моментами времени t1, t2, t3,
t4, t5, находим значения потоков для этих моментов времени
и соответствующих им токов. Зависимость напряжения,
потока и тока в катушке со сталью при неучете потерь в
стали изображены на рис. 5.3.
В том случае, когда по катушке протекает синусоидальный
ток, кривая магнитного потока u(t) получается сплюснутой,
как это изображено на рис. 5.4. Соответственно, напряжение
имеет пикообразную форму.
13.
i(t)u(t)
Ф(t)
t
Рис. 5.3. Напряжение, поток и ток в
катушке со сталью без учета потерь в
стали (напряжение синусоидально).
14.
i(t)u(t)
Ф(t)
t
Рис. 5.3 а. Напряжение, поток и ток в катушке со
сталью без учета потерь в стали при синусоидальном
токе.
15.
Чем больше насыщение стального сердечника, тем сильнеенарушается синусоидальность. Если же индукция в
сердечнике невелика, насыщения нет, то кривые близки к
синусоидам.
При отсутствии активных потерь в ферромагнитном
сердечнике кривые токов, магнитных потоков, ЭДС и
напряжений симметричны относительно абсцисс, поэтому
содержат только нечетные гармоники.
На рис 5.4. изображены кривая тока при учете гистерезиса,
когда приложенное напряжение синусоидально и,
следовательно синусоидальный магнитный поток.
16.
Ф(t)t
i(t)
Рис. 5.4. Построение кривой тока в катушке со сталью
при синусоидальном магнитном потоке с учета потерь
в стали.
17.
Построение проводится также как и предыдущие с темразличием, что в моменты времени t1, t2 значения тока
соответствуют восходящей части кривой вебер-амперной
характеристики, а в моменты времени t4, t5 – нисходящей.
Зависимости приложенного синусоидального напряжения,
магнитного потока и тока от времени в катушке со сталью
приведены на рис. 5.5.
При синусоидальном токе кривые магнитного потока и
напряжения будут аналогичны кривым, приведенным на рис.
5.3, но сдвинуты вправо относительно синусоиды тока.
Сдвиг определяется площадью петли гистерезиса
18.
i(t)u(t)
Ф(t)
t
Рис. 5.5. Синусоидальное напряжение, магнитный
поток и ток в катушке со сталью при учете
гистерезиса.
19. Замена нелинейных индуктивностей эквивалентными линейными
Часто нелинейную цепь заменяют эквивалентной линейной,если нелинейности выражены достаточно слабо. В тех
случаях, когда форма кривых не представляет интереса,
можно воспользоваться методом, основанным на замене
действительных несинусоидальных кривых тока и
напряжения эквивалентными синусоидальными. Этот метод
назван методом эквивалентных синусоид.
Замена несинусоидальных токов и напряжений
синусоидальными позволяет пользоваться уравнениями в
комплексной форме записи, применять для расчетов все
известные методы расчета электрических цепей,
пользоваться векторными диаграммами.
20.
Выбор эквивалентных синусоид тока и напряженияосуществляют так, чтобы активная мощность в цепи
оставалась неизменной. В этих условиях при
синусоидальных приложенных напряжениях
эквивалентными синусоидами тока должны быть их первые
гармоники. И напротив, при синусоидальных протекающих
токах эквивалентными должны быть первые гармоники
напряжения.
Рассмотрим катушку со сталью, в которой пренебрежем
потокосцеплениями рассеяния и активным сопротивлением
проводника катушки.
Связь между эквивалентными синусоидами тока и
напряжения и угла между ними определяется из условия
сохранения потерь в сердечнике, т.е.
UI cos PГ Р В
(5.6)
21.
Замена действительных кривых тока эквивалентнымисинусоидами приводит к тому, что действительная петля
гистерезиса вебер-амперной характеристики заменяется
эллипсовидной, равной площади. При воздействии
синусоидального напряжения в эллипсовидной
характеристике сохраняется максимальное потокосцепление
(рис. 5.6 а), при синусоидальном напряжении остается
неизменной амплитуда тока (рис. 5.6.б).
22.
аб
max
max
I
Imax
Рис. 5.6. К замене действительных кривых тока и напряжения в катушке со сталью
эквивалентными синусоидами: а – при синусоидальном напряжении; б - при
синусоидальном токе.
I
Imax
23. Уравнения, векторная диаграмма и эквивалентная схема замещения катушки со сталью
Рассмотрим катушку на магнитопроводе из ферромагнитногосердечнике. (рис. 5.7 а). Будем считать, что весь магнитный
поток замыкается внутри сердечника, т.е. отсутствует
рассеяние. Пренебрежем также активным сопротивлением
провода катушки. При данных допущениях
dФ 0
d
u e
w
u0
(5.7)
dt
dt
Это уравнение нелинейное. Заменяя несинусоидальные
кривые тока (напряжения и потока), получаем:
jw Ф
0 U
0
U
(5.8)
24.
Ф0i
u
Рис. 5.7 а Катушка на сердечнике из
ферромагнитного материала
25.
Потоку Ф0 согласно вебер-амперной характеристикесоответствует ток, который называется током
намагничивания. Ток намагничивания совпадает по
направлению с потоком Ф0. Наличие петли гистерезиса и
вихревых токов создают потери в магнитопроводе, которые
обуславливают активную составляющую тока . Эта
составляющая тока совпадает по направлению с
приложенным напряжением. Векторная диаграмма
описанных величин приведена на рис. 5.7 б.
Схема замещения катушки, соответствующая построенной
векторной диаграмме, приведена на рис. 5.7 в. Она
представлена двумя параллельно включенными
сопротивлениями – активным r0 и нелинейным индуктивным
х0.
26.
Uб
в
I
I
I A
А
I HAM
Ф
0
jx
r0
U
U
0
I A
E
Рис. 5.7. Векторная диаграмма токов, напряжения и
магнитного потока (б);
схема замещения (в);
(не учитываются активное сопротивление провода
и потокосцепление рассеяния)
0
I HAM
27.
Рассмотрим общий случай. Во-первых, в реальной катушкеимеет место активное сопротивление провода, во-вторых,
кроме основного потокосцепления, замыкающегося по
ферромагнитному сердечнику присутствует также
потокосцепление рассеяния s, замыкающееся вокруг витков
по воздуху (рис. 5.8 а). Оно пропорционально току и может
быть выражено как
s = L i
Общее потокосцепление, пронизывающее витки обмотки,
равно:
0 s = w Ф0 + Ls i
(5.9)
28.
аФ0
i
u
s
Рис. 5.8 а Катушка на сердечнике из
ферромагнитного материала
29.
Связь приложенного к катушке напряжения спотокосцеплением выразится уравнением:
d
di
dФ0
u r i
r i L w
dt
dt
dt
(5.10)
При допущении, что токи и напряжения в цепи
синусоидальны, с учетом (5.7) получим:
r I j L s I U
0
U
(5.11)
В уравнении (5.11) по сравнению с уравнением (5.8)
добавились два слагаемых, соответствующих падению
напряжения на активном сопротивлении катушки и
индуктивности рассеяния. Векторная диаграмма и схема
замещения катушки со сталью, согласно уравнению (5.11),
приведены на рис. 5.8 б и 5.8 в.
30.
UjI xs
I r
б
в
r
I
I HAM
I A
А
Ф
0
U
I
jxs
jx0
r0
I A
U
0
E
Рис. 5.8. Векторная диаграмма токов, напряжения и
магнитного потока реальной катушки (б);
схема замещения (в)
I HAM
31. Уравнения, векторная диаграмма и схема замещения трансформатора с ферромагнитным сердечником
Рассмотрим трансформатор с двумя обмотками, имеющимичисло витков w1 и w2. Обмотку с числом витков w1 будем
считать первичной, к ней приложено напряжение u1, а
обмотку с числом витков w2 – вторичной, к ней подключена
нагрузка. Картина магнитного поля в трансформаторе
достаточно сложна. Есть потоки, охватывающие обе
обмотки, есть сцепленные с одним или несколькими витками
одной обмотки. Есть потоки, сцепленные со всеми витками
одной обмотки. Но с большой степенью, удовлетворяющей
соотношениям, связывающим электрические параметры,
картину магнитного поля можно привести к изображенной
на рис. 5.9. Линии потока Ф0 охватывают все витки обеих
обмоток. Поток Ф0 называется основным. Кроме него
имеются потоки, замыкающиеся по воздуху и охватывающие
только одну обмотку.
32.
Ф0i2
i1
u1
s1
s2
Рис. 5.9. Катушка на сердечнике
из ферромагнитного материала.
u2
33.
Все потоки, охватывающие первичную обмотку, образуютпотокосцепление s1, названное потокосцеплением
рассеяния первичной обмотки. Потокосцепление s2 –
потокосцепление рассеяния вторичной обмотки. Поток Ф0
нелинейно связан с магнитодвижущей силой F = i1 w1 + i2 w2,
определяемой обоими токами. Потокосцепления s1 и s2
замыкаются по воздуху и, следовательно, линейно
соответственно зависят от токов i1 и i2:
s1 = Ls1 i1
s2 = Ls2 i2
(5.12)
Для потокосцеплений 1 с первичной обмоткой и 2 с
вторичной обмоткой можно написать:
1 s1 01 = Ls1 i1 + w1 Ф0
2 s2 02 = Ls2 i2 + w2 Ф0
(5.13)
Здесь Ls1 и Ls2 – индуктивности рассеяния соответственно
первичной и вторичной обмоток.
34.
Приложим к первичной обмотке напряжение u1, а к зажимамвторичной обмотке подключим сопротивление нагрузки.
Напряжение u1 уравновешивается суммой падения напряжения
на активном сопротивлении первичной обмотки и ЭДС
dФ 0 ,
di 1
самоиндукции
e 1 L s1
w2
dt
dt
индуцируемой потокосцеплением 1:
d 1
di
u 1 r1 i 1
r1 i 1 L s1 1 u 0
dt
dt
(5.14)
dФ 0
ЭДС е2, равная w 2 dt , индуктируемая потоком Ф0 во
вторичной обмотке, равна сумме падений напряжений во
вторичной обмотке от тока i2 и напряжения u2 на зажимах
вторичной обмотки:
di 2
(5.15)
e 2 r2 i 2 L s 2
u2
dt
35.
Уравнения трансформатора нелинейны вследствиенелинейной зависимости между потоком Ф0 и МДС F.
Поэтому периодические токи, магнитные потоки и
напряжения несинусоидальны. Заменяя их эквивалентными
синусоидами, запишем уравнения (5.14) и (5.15) в
комплексной форме:
1 r1 I 1 j L s I 1 U
0
U
1
r I j L I U
E
2
2
2
s2 2
2
(5.16)
В общем случае количество витков w1 и w2 отличаются друг
от друга, соответственно отличаются напряжения u0 и ЭДС
е2. Преобразуем уравнения (5.16) так, чтобы напряжение u0
было равно по величине ЭДС самоиндукции вторичной
обмотки. Эти преобразования называются приведением всех
величин во вторичной обмотке к первичной обмотке.
Приведенные величины будем снабжать штрихами.
36.
Приведение осуществляют, заменяя реальныйтрансформатор с числом витков w2 во вторичной обмотке
эквивалентным с числом витков w 2 w 1. Таким образом
вместо реального трансформатора с коэффициентом
w1
трансформации k T
имеем ему эквивалентный с
w2
коэффициентом трансформации, равным единице.
Условием эквивалентности является сохранение картины
магнитного поля трансформатора. Это условие соблюдается
если МДС трансформатора остается без изменения. Т.е.,
i 1 w 1 i 2 w 2 i 1 w 1 i 2 w 2
Следовательноi 2
w2
i2
w1
(5.17)
37.
Так как поток при этом не изменяется, то ЭДС во вторичнойобмотке изменяется пропорционально числу витков
w1
e 2
e 2 k T e 2 e 1 u 0
w2
(5.18)
Очевидно, что все падения напряжений во вторичной цепи
должны быть пересчитаны пропорционально коэффициенту
трансформации kТ. Сопротивления самой вторичной
обмотки и все, подключенные к ней, пересчитываются
пропорционально квадрату kТ. Действительно:
w1
Z 2
w2
2
U
2
k TP
Z2
I2
2
38.
После приведения уравнения трансформатора запишутся ввиде:
r I j L I U
U
1
1
1
s1 1
0
r I j L I U
E
2
2
2
s2 2
2
где U 2 Z 2 I 2
0 и МДС F
Связь между комплексной амплитудой потока Ф
в комплексной форме запишется как:
0 w1
1 w 1 I 2 w 2 (I 1 I 2 ) w 1
I
I
0
Ф
ZM
ZM
ZM
где – Z M комплекс магнитного сопротивления сердечника,
учитывающий потери на гистерезис и вихревые токи.
Величину I 0 называют намагничивающим током,
который протекает под действием напряжения U 0 . Заметим,
что I 0 является в общем случае при I 1 0 и I 2 0 только
расчетной величиной. Он равен току I1, если I 2 0.
39.
Уравнение I 0 I 1 I 2 является первым законом Кирхгофа.С учетом этого и (5.18) можно предложить схему замещения
трансформатора, изображенную на рис. 5.10 а. Векторная
диаграмма, соответствующая схеме замещения, приведена на
рис. 5.10 б.
В эквивалентной схеме можно принять r2 r2 и L s 2 L s 2 .
.
40.
U1
I 1 j Ls1
в
U
0
б
I 1 r1
r1
I 1
Ls1
I 1
I 2
I 0
I A
Ô
0
U
1
U
0
L s 2
I 2
jx
r0
I 0
r2
U
2
I 2
I 2 r2
U
2
I 2 j L s2
E
Рис. 5.9. Схема замещения трансформатора(а), векторная диаграмма токов, напряжения
и магнитного потока (б);.