Похожие презентации:
Линейные дифференциальные уравнения 1-ого порядка
1. Линейные дифференциальные уравнения 1-ого порядка
Дифференциальное уравнение первого порядканазывается линейным, если его можно записать
y p( x) y g ( x) (9)
в виде
где p(x) и g(x) – заданные функции.
Искомая функция y и ее производная
y входят в уравнение, не перемножаясь между собой
МЕТОДЫ ИНТЕГРИРОВАНИЯ ДИФФЕРЕНЦ. УРАВНЕНИЯ (9)
МЕТОД БЕРНУЛЛИ
МЕТОД ЛАГРАНЖА
2. Метод Бернулли
yРешение уравнения (9) ищется в виде
u v , где u u ( x), v v( x)- неизвестные
функции от x, причем одна из них произвольна (но 0)
y u v u v
Подставим в (9): u v u v p ( x )uv q ( x )
u v u (v p( x)v) q( x) (10)
Подберем функцию v(x) так, чтобы v p ( x )v 0
dv
p ( x)v ln v p ( x)dx c
dx
3. Метод Бернулли
Так как функция v(x) подбирается свободно, то можнопринять c=0
v e
Подставим в (10): u v
p ( x ) dx
q (x) или
u e
p ( x ) dx
q ( x)
p ( x ) dx
u q ( x) e
p ( x ) dx
p ( x ) dx
du
q( x) e
u q( x) e
dx c
dx
p ( x ) dx
p ( x ) dx
y ( q ( x) e
dx c) e
4. Пример
2y2
y
5x
x
y u v y u v u v
2
2
2
2
u v u v uv 5 x u v u (v v) 5 x
x
x
2
dv
2
1
v v 0
dx ln v 2 ln x ln 2
x
v
x
x
1
1
2
4
5
v 2 u 2 5 x u 5 x u x c
x
x
1
c
5
3
y ( x c) 2 x 2
x
x
5. Дифференциальные уравнения Бернулли
Дифференциальное уравнение Бернулли - этоуравнение вида
n
y p ( x) y g ( x) y
(11)
где n R; n 0, n 1
n=0 уравнение (11) становится линейным
дифференциальным уравнением первого порядка
n=1 уравнение (11) имеет вид дифференциального
уравнения с разделяющимися переменными
y ( g ( x) p ( x)) y
В дальнейшем будем считать, что n 0, n 1
6. Метод Бернулли
y 0n
1 n
y y p ( x) y g ( x)
1 n
Выполним замену. Обозначим через z y
Разделим уравнение (11) на
z (1 n) y
n
y y
n
n
1
y
z
1 n
Линейное дифференциальное уравнение 1-ого
порядка относительно z
1
z p ( x ) z g ( x ) (12)
1 n
Решая его методом Бернулли, получим общее
1
1
решение z=z(x,c)
1 n
1 n
y z
( z ( x, c))
7. Пример
6xУравнение Бернулли
e
y y 2
6x
2
y
y e y
y
2
3
6x
y y y e
1
3
2
2
z y z 3 y y y y z
3
1
6x
6x
z z e z 3 z 3e
3
z u v z u v u v
6x
u v u v 3uv 3e
6x
u v u(v 3v) 3e
8. Пример
11
x
3
v 3v 0 dv dx ln v x v e
3v
3
3x
v e
e u 3e u 3e
3x
u e c
3x
6x
3x
z e (e
3x
y
3
3x
c) e
6x
ce
z e (e c)
x
3x
1
3
3x
9. Дифференциальные уравнения в полных дифференциалах
Уравнение вида P( x, y )dx Q( x, y )dy 0 (13)называется уравнением в полных дифференциал.,
если левая часть этого уравнения является
полным дифференциалом функции u=u(x,y), т.е.
du ( x, y ) P( x, y )dx Q( x, y )dy
Если (13) является уравнением в полных
дифференциалах, то его можно записать как
du ( x, y ) 0 u ( x, y ) с - общий интеграл
уравнения (13) (с=const)
10. Дифференциальные уравнения в полных дифференциалах
Для того, чтобы P( x, y )dx Q( x, y )dy являлось полнымдифференциалом функции u=u(x,y) необходимо и
достаточно выполнение следующего условия
P( x, y ) Q( x, y )
y
x
(14)
Пусть условие (14) выполнено. Тогда
u
(
x
,
y
)
du ( x, y ) P( x, y )dx Q( x, y )dy
P ( x, y )
x
(15)
u ( x, y)
u ( x, y)
du ( x, y)
dx
dy u ( x, y ) Q( x, y)
x
y
y
11. Дифференциальные уравнения в полных дифференциалах
Проинтегрируем первое уравнение в (15) по xu ( x, y ) P( x, y )dx c( y )
Найдем c(y). Для этого вычислим частную
производную полученного уравнения по переменной y
u ( x, y )
( P( x, y )dx) c ( y ) Q( x, y )
y
y
c ( y ) Q( x, y ) ( P( x, y )dx) (16)
y
12. Дифференциальные уравнения в полных дифференциалах
Проинтегрируем (16). Получимc( y ) (Q( x, y ) ( P( x, y )dx)) dy c
y
c const
u ( x, y) P( x, y)dx (Q( x, y) ( P( x, y)dx)) dy c
y
Приравнивая полученное выражение к константе c,
записывают общий интеграл уравнения (13)