Содержание:
Понятие модуля
Свойства модуля
Свойства модуля
Геометрическая интерпретация модуля
Примеры Раскрыть модули:
Решение уравнений вида f(x)= a
Решение уравнений вида |f(x)|= a
Пример: 3х –10 = х – 2
Решить самостоятельно: 4x –1 = 2х + 3
Решить уравнение 2|x – 2| – 3|х + 4| = 1
Решить уравнение 2x – 2 – 3х + 4 = 1
Примеры (решить самостоятельно)
1.03M
Категория: МатематикаМатематика

Модуль и его приложения

1.

М
А
О
У
С
О
Ш

Модуль и его
приложения
L/O/G/O
www.themegallery.com
5

2. Содержание:

Понятие модуля
Свойства модуля 1°– 5°
Свойства модуля 6°– 10°
Геометрическая интерпретация модуля
Примеры
Решение уравнений вида |f(x)|= a
Решение уравнений вида |f(x)|= g(x)
Решение уравнений вида |f(x)| = |g(x)|

3. Понятие модуля

Абсолютной величиной (модулем)
действительного числа а называется само
число а, если оно неотрицательное, и число,
противоположное а, если а – отрицательное.
a , если а 0;
a
а , если а 0.
Пример:
2x 3, если x 1,5;
2x 3
2x 3, если x 1,5.

4. Свойства модуля

1 a а
2 a b а b
а
a
3
, где b 0
b
b
4 a b а b , если a 0, b 0
5 a b a b, если a 0, b 0

5. Свойства модуля

6 a b а b , если ab 0
7 a
2
a
2
8 a b 0, если a b 0
2
9
2
a а
2
10 a1 a2 ... an а1 а2 ... аn

6. Геометрическая интерпретация модуля

а


0
а
Это расстояние от начала отсчета до
точки, изображающей число.
х

7. Примеры Раскрыть модули:

1) p 3 ;
2)
3 5;
3)
5 2;
4) 1 2 ;
5) x 2 ;
6) x 1 ;
4
7) ( a 3 ) , a 3 ;
2
8) ( b 4 ) , b 4 ;
2
9) m 2m 1,
2
m 1.

8. Решение уравнений вида f(x)= a

Решение уравнений вида
f(x) = a
f (x ) a ,
f (x ) a.
Пример: x – 8 =5
x 8 5,
x 13,
x 8 5; ⇔
x 3.
Ответ: 3; 13.

9. Решение уравнений вида |f(x)|= a

|2x – 3|= 4
|5x + 6|= 7
|9 – 3x |= 6
|4x + 2|= – 1
|8 – 2x|= 0
|10x + 3|= 16
|24 – 3x|= 12
|2x + 30|= 48
x1 = 3,5;
x1 = 0,2;
x1 = 1;
x Ø
x=4
x1 = 1,3;
x1 = 12;
x1 = 9;
x2 = – 0,5
x2 = – 2,6
x2 = 5
x2 = – 1,9
x2 = 4
x2 = – 39

10.

Решение уравнений вида
f(x) = g(x)
f (x ) g (x ),
g
(
x
)
0
;
f (x ) g (x ),
g (x ) 0.
или
f (x ) g (x ),
f (x ) g (x ),
g (x ) 0;

11. Пример: 3х –10 = х – 2

Пример: 3х –10 = х – 2
3x 10 x 2,
x
2
0
;
3x 10 (x 2), ⇔
x 2 0;
x 4,

x 3.
2x 8,
x
2
;

4x 12,
x 2;
Ответ: 3; 4.

12.

Решение уравнений вида
f(x) = g(x)
f (x ) g (x ),
f (x ) g (x ).
Пример: x – 2 = 3 – x
x 2 3 x ,
x 2 3 x ;

2x 5,
2 3;
Ответ: 2,5.
x 2,5,
⇔ x Ø ;

13. Решить самостоятельно: 4x –1 = 2х + 3

Решить самостоятельно:
4x –1 = 2х+ 3
x 2,
4x 1 2x 3,
2x 4,

1
4x 1 2x 3; ⇔ 6х 2;
x .
3
1
Ответ: 2; – ---.
3

14. Решить уравнение 2|x – 2| – 3|х + 4| = 1

Решить уравнение
x+4
2|x
2| – 3|х
4| = 1
x–2
–4 ≤ x ≤ 2
x < –4
-4
x>2
2


+

+
+
х

15. Решить уравнение 2x – 2 – 3х + 4 = 1

Решить уравнение
2 x – 2 – 3 х + 4 = 1
x 4,
2
(
x
2
)
3
(
x
4
)
1
;
4 x 2,
2( x 2) 3(x 4) 1;
x 2,
2(x 2) 3(x 4) 1;

x 4,
x 15;
4 x 2,
x 1,8;
x 2,
x 17.
Ответ: –15; –1,8.

16. Примеры (решить самостоятельно)

1) x2 + 3x = 2(x + 1)
2) x – 6 = x2 – 5x + 9
3) 2x + 8 – x – 5 = 12
English     Русский Правила