1.07M
Категория: МатематикаМатематика

Параллельность прямой и плоскости

1.

m
m
m
A
Прямая лежит
на плоскости
Прямая и плоскость
не имеют общих точек
Прямая и плоскость
пересекаются

2.

Определение
Прямая и плоскость называются параллельными,
если они не имеют общих точек.

3.

4.

Теорема 1
Дано:
Если прямая, не лежащая в данной плоскости, параллельна
какой-нибудь прямой, лежащей в этой плоскости, то она
параллельна данной плоскости.
c
Доказать:
Доказательство.
d

5.

Теорема 1
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь
прямой, лежащей в этой плоскости, то она параллельна данной плоскости.
Дано:
c
Доказать:
Доказательство.
F
d

6.

Теорема 1
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь
прямой, лежащей в этой плоскости, то она параллельна данной плоскости.
Дано:
c
Доказать:
Доказательство.
Противоречие.
F
d

7.

Теорема 1
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь
прямой, лежащей в этой плоскости, то она параллельна данной плоскости.
Дано:
c
Доказать:
Доказательство.
d
Противоречие.
Теорема доказана.

8.

Утверждение 1
Если плоскость проходит через данную прямую, параллельную другой
плоскости, и пересекает эту плоскость, то линия пересечения плоскостей
параллельна данной прямой.
Дано:
с
Доказать:
Доказательство.
c,d – лежат в
одной плоскости;
d
c и d не пересекаются;
Утверждение доказано.

9.

Утверждение 2
Если одна из двух параллельных прямых параллельна данной
плоскости, то другая прямая также параллельна данной плоскости,
либо лежит в этой плоскости.
a
Дано:
Доказать:
b
Доказательство.
или
Утверждение доказано.

10.

B
Задача 1.
Дано:
C
C – середина AB;
Найти:
Решение:
A

11.

B
Задача 1.
Дано:
C
C – середина AB;
Найти:
Решение:
ΔABB1:
C – середина AB;
CC1 средняя линия ΔABB1;
A

12.

Задача 2.
B
Дано:
ABCD – трапеция;
KL – ср. линия трапеции;
K
Найти:
Пересекают ли прямые
BC и AD плоскость ?
C
L
Решение:
A
Ответ: Нет.
D
English     Русский Правила