Похожие презентации:
15. Синус косинус
1. Синус, косинус, тангенс, котангенс кута
1506.01.2026
2. Повторимо:
• Як можна назвати цей кут?AOB
BOA
O
3. Вимірювання кутів:
NOB 40MOB 60
LOB 110
LOB 150
AOB 180
AOK 30
4. Класифікація за величиною:
•Гострий (від 0° до 90°)•Прямий (90°)
•Тупий (від 90° до 180°)
•Розгорнутий (180°)
5. Тепер ми будемо прив’язувати кути до одиничного кола:
Коло радіуса 1R OA OB OC 1
BOA 50 , бо відбувається
поворот проти
годинникової
стрілки
AOC 50 (за годинниковою
стрілкою)
6. Розглянемо інші кути:
Чверть оберта: 90ºПів оберта: 180º
Повний оберт: 360º
7.
8.
9.
На малюнку при повороті на 40ºрадіус ОА перейшов в радіус ОВ.
Якщо потім здійснимо повний
оберт (360º) – знову перейдемо в
радіус ОВ. Отримаємо кут
40º+360º=400º.
Якщо виконаємо поворот на -360º знову перейдемо в ОВ і отримаємо
кут 40º-360º=-320º
10. Будь-який кут можна подати у вигляді
•Наприклад,11. Належність кутів чвертям:
12. Позначте на колах кути:
60°; -45°120°; 330°
-120°; 210°
-210°; 390°
390
-120
-210
13. Пригадаємо означення:
BCsin A
AB
AC
cos A
AB
BC
tg A
AC
14. На одиничному колі:
ysin y
1
x
cos x
1
y
tg
x
x
ctg
y
15.
16. Тригонометричні значення деяких кутів
17.
18. Таблиця, запропонована у довідкових матеріалах НМТ:
19. Вправи:
20.
21.
22. Підсумки:
• Правильним чи неправильним є твердження:1) Синусом кута є абсциса відповідної куту точки
на одиничному колі;
2) Тангенс 90° не існує;
3) Від’ємний
кут
відраховуємо
на
тригонометричному колі у напрямку проти
годинникової стрілки;
4) Котангенс кута – це відношення косинуса
до синуса цього кута;
23. Домашнє завдання:
• Параграф 7 (ст. 68-74)• Вправи 7.8, 7.10, 7.16
24. Використана література:
1. Істер О.С. Математика :(алгебра і початки аналізу та
геометрія, рівень стандарту) :
підруч. для 10-го кл. закл. заг.
серед. освіти— Київ : Генеза,
2018. — 384 с. : іл.