Похожие презентации:
Понятие многогранника. Призма
1.
2.
Параллелепипед –поверхность, составленная из
шести параллелограммов.
3.
Тетраэдр – поверхность,составленная из четырех
треугольников.
SS
В
А
С
Поверхность, составленную из многоугольников и
ограничивающую некоторое геометрическое тело, будем
называть многогранной поверхностью или многогранником.
4.
Октаэдр составлен из восьмитреугольников.
Многоугольники, из которых
составлен многогранник,
называются
гранями.
Стороны граней называются
ребрами, а концы ребер –
вершинами.
Отрезок, соединяющий две
вершины, не принадлежащие
одной грани, называется
диагональю многогранника.
5.
Прямоугольный параллелепипедМногогранник
называется
выпуклым, если
он расположен по
одну сторону от
плоскости каждой
его грани.
6.
Невыпуклый многогранник7.
ПризмаМногогранник,
составленный из двух
равных многоугольников
А1А2…Аn и В1В2…Вn,
расположенных в
параллельных плоскостях,
и n параллелограммов,
называется призмой.
Bn
B1
B3
B2
n-угольная призма.
Аn
А1
А3
А2
Многоугольники
А1А2…Аn и В1В2…Вn –
основания призмы.
Параллелограммы
А1В1В2В2, А2В2В3А3 и т.д.
боковые грани призмы
8.
Отрезки А1В1, А2В2 и т.д. боковые ребра призмыПризма
Bn
Перпендикуляр,
проведенный из какойB3 нибудь точки одного
основания к плоскости
другого основания,
называется высотой
призмы.
B1
B2
Аn
А1
А3
А2
9.
Если боковые ребра перпендикулярны к основаниям, топризма называется прямой, в противном случае наклонной.
Высота прямой призмы равна ее боковому ребру.
10.
Прямая призма называется правильной, если ее основания- правильные многоугольники. У такой призмы все боковые
грани – равные прямоугольники.
11.
Площадью полной поверхности призмыназывается сумма площадей всех граней, а
площадью боковой поверхности призмы –
сумма площадей ее боковых граней.
S полн Sбок 2Sосн
h
Pocн
Sбок Росн h
Математика