Комплексные числа и действия над ними
Комплексные числа
Основные понятия
Геометрическое изображение комплексных чисел
Тригонометрическая форма записи комплексных чисел
Действия над комплексными числами
Действия над комплексными числами
Действия над комплексными числами
Действия над комплексными числами
Действия над комплексными числами
Действия над комплексными числами
Действия над комплексными числами
303.61K
Категория: МатематикаМатематика

Комплексные числа и действия над ними

1. Комплексные числа и действия над ними

2. Комплексные числа

Основные понятия
Комплексным числом z называют выражение:
z a b i,
где а и b – действительные числа, i – мнимая единица,
определяемая равенством:
i 1
i 2 1
а называется действительной частью числа z,
b – мнимой частью. Их обозначают так:
a Re z;
b Im z.
Если а = 0, то число b i называется чисто мнимым.
Если b = 0, то получается действительное число а.
Два комплексных числа, отличающиеся только знаком мнимой
части, называются сопряженными:
z a b i,
z a b i,

3. Основные понятия

Геометрическое изображение
комплексных чисел
Всякое комплексное число z a b i, можно изобразить на
плоскости XOY в виде точки A(a; b).
Плоскость, на которой изображаются комплексные числа,
называют плоскостью комплексной переменной.
y
z
Точкам, лежащим на оси OX,
A(a; b)
b
соответствуют действительные числа
(b = 0), поэтому ось OX называют
действительной осью.
a х
0
Точкам, лежащим на оси OY , соответствуют чисто мнимые числа
(a = 0), поэтому ось OY называют мнимой осью.
Иногда удобно считать геометрическим изображением
комплексного числа z вектор OA

4. Геометрическое изображение комплексных чисел

Тригонометрическая форма записи
комплексных чисел
Обозначим через r модуль вектора OA , через φ угол между
вектором OA и положительным направлением оси OX.
Тогда имеют место равенства:
y
z
a r cos ; b r sin
A(a; b)
b
r
0
Следовательно, комплексное число z
можно представить в виде:
φ
a х
a i b r cos i r sin
z r (cos i sin )
b
Модуль
комплексного
Аргумент
2комплексного
2
Тригонометрическая
arg z arctg
r zчисла
aчисла
b
форма записи
a
комплексного
числа числа z считается положительным, если
Аргумент
комплексного
он отсчитывается от положительного направления оси OX против
часовой стрелки. Очевидно, что φ определяется не однозначно, а
k Z.
с точностью до слагаемого 2 k

5. Тригонометрическая форма записи комплексных чисел

Действия над комплексными числами
На основании этого правила получим:
z1 z2 a1 i b1 a2 i b2
a1 a2 i b1 a2 i b2 a1 i 2 b1 b2
z1 z2 a1 a2 b1 b2 i b1 a2 b2 a1
Произведение сопряженных комплексных чисел:
z z (a i b ) (a i b ) a2 (i b)2 a 2 b 2
z z a b z
2
2
2

6. Действия над комплексными числами

Если комплексные числа заданы в тригонометрической форме:
z1 r1 (cos 1 i sin 1 )
z2 r2 (cos 2 i sin 2 )
тогда произведение находится по формуле:
z1 z2 r1 r2 (cos( 1 2 ) i sin( 1 2 ))

7. Действия над комплексными числами

4
Деление комплексных чисел.
Если комплексные числа заданы в тригонометрической форме:
z1 r1(cos 1 i sin 1 )
z2 r2 (cos 2 i sin 2 )
z1 r1
(cos( 1 2 ) i sin( 1 2 ))
z2 r2

8. Действия над комплексными числами

Найти произведение и частное комплексных чисел:
z1 2 3i,
z2 1 4i
= -1
z1 z2 2 3i 1 4i 2 3i 8i 12i 2
2 3i 8i 12 14 5i
z1 2 3i
(2 3i ) (1 4i ) 2 3i 8i 12i 2
2
2
z2 1 4 i
(1 4i ) (1 4i )
1 4
10 11
10 11i
2 3i 8i 12
i
17 17
17
17

9. Действия над комплексными числами

5
Возведение в степень комплексного числа.
При возведении комплексного числа z r (cos i sin )
в целую положительную степень модуль возводится в эту степень,
а аргумент умножается на показатель степени (формула Муавра)
z n r n (cos n i sin n )
6
Извлечение корня из комплексного числа.
Корень n – ой степени из комплексного числа
z r (cos i sin ) находится по формуле:
n
z r (cos
n
2k
n
i sin
2k
n
)
Арифметическое значение корня из
положительного числа r

10. Действия над комплексными числами

n
z r (cos
n
2k
n
i sin
2k
n
)
Придавая k значения 0, 1, 2, …,n –1, получим n различных
значений корня.
Для других значений k аргументы будут отличаться от
полученных на число, кратное 2π, и , следовательно будут
получаться значения корня, совпадающие с рассмотренными.
Итак, корень n – ой степени из комплексного числа имеет n
различных значений.
Корень n – ой степени из действительного числа также имеет n
значений, так как действительное число – частный случай
комплексного числа и может быть представлено в
тригонометрической форме:
A A (cos 0 i sin0) ( A 0)
A A (cos i sin ) ( A 0)

11. Действия над комплексными числами

Найти все значения кубического корня из единицы
1 cos 0 i sin0
3
(r 1; 0)
0 2k
0 2k
2k
2k
1 cos
i sin
cos
i sin
3
3
3
3
k 0
k 1
k 2
1 cos 0 i sin 0 1
3
3
2
2
1
3
1 cos
i sin
i
3
3
2
2
3
4
4
1
3
1 cos
i sin
i
3
3
2
2
y
z
В
A
х
С

12. Действия над комплексными числами

Показательная форма комплексного
числа
Пусть z x i y . Если х и y – действительные переменные, то
z называется комплексной переменной.
Рассмотрим показательную функцию от комплексной
переменной z.
w ez
или
w e x i y
Комплексные значения функции w определяются по формуле:
e x i y e x (cos y i sin y )
z 2 i
Пример:
e
2 i
(1)
4
2
2
e
2
e
2
4
e (cos i sin )
i
4
4
2
2
2
English     Русский Правила