Похожие презентации:
Автокорреляция и ее последствия. Обнаружение автокорреляции и методы исправления
1. Лекция 7. АВТОКОРРЕЛЯЦИЯ
ЛЕКЦИЯ 7.АВТОКОРРЕЛЯЦИЯ
2. Цели лекции
ЦЕЛИ ЛЕКЦИИ1. Автокорреляция и ее последствия.
2. Обнаружение автокорреляции.
3. Методы исправления автокорреляции.
3. Определение автокорреляции
ОПРЕДЕЛЕНИЕ АВТОКОРРЕЛЯЦИИАвтокорреляция
(последовательная
корреляция)
–
это
корреляция
между
наблюдаемыми показателями во времени
(временные ряды) или в пространстве
(перекрестные данные).
Автокорреляция остатков характеризуется тем, что
не выполняется предпосылка 30 использования МНК:
3 . i j
0
i j
0,
Cov( i , j ) 2
, i j
4. Виды автокорреляции
ВИДЫ АВТОКОРРЕЛЯЦИИ5. Причины чистой автокорреляции
ПРИЧИНЫ ЧИСТОЙ АВТОКОРРЕЛЯЦИИ1. Инерция.
Трансформация, изменение многих экономических
показателей обладает инерционностью.
2. Эффект паутины.
Многие экономические показатели реагируют на
изменение экономических условий с запаздыванием
(временным лагом)
3. Сглаживание данных.
Усреднение данных по некоторому продолжительному
интервалу времени.
6. Автокорреляция первого порядка
АВТОКОРРЕЛЯЦИЯ ПЕРВОГО ПОРЯДКАt t 1 t
1 1
случайный член рассматриваемого уравнения
регрессии,
коэффициент автокорреляции первого порядка,
случайный член, не подверженный автокорреляции
7. Сезонная автокорреляция
СЕЗОННАЯ АВТОКОРРЕЛЯЦИЯt t 4 t
1 1
случайный член рассматриваемого уравнения
регрессии,
коэффициент сезонной автокорреляции,
случайный член, не подверженный автокорреляции
8. Автокорреляция второго порядка
АВТОКОРРЕЛЯЦИЯ ВТОРОГО ПОРЯДКАt 1 t 1 2 t 2 t
случайный член рассматриваемого уравнения
регрессии,
1, 2 коэффициенты автокорреляции первого порядка,
случайный член, не подверженный автокорреляции
9. Классический случайный член (автокорреляция отсутствует)
КЛАССИЧЕСКИЙ СЛУЧАЙНЫЙ ЧЛЕН(АВТОКОРРЕЛЯЦИЯ ОТСУТСТВУЕТ)
10. Положительная автокорреляция
ПОЛОЖИТЕЛЬНАЯ АВТОКОРРЕЛЯЦИЯt t 1 t
0
Положительная автокорреляция – наиболее важный для
экономики случай
11. Отрицательная автокорреляция
ОТРИЦАТЕЛЬНАЯ АВТОКОРРЕЛЯЦИЯt t 1 t
0
12. Ложная автокорреляция (автокорреляция, вызванная ошибочной спецификацией)
ЛОЖНАЯ АВТОКОРРЕЛЯЦИЯ(АВТОКОРРЕЛЯЦИЯ, ВЫЗВАННАЯ ОШИБОЧНОЙ
СПЕЦИФИКАЦИЕЙ)
Yt 0 1 X t1 2 X t 2 t
Yt 0 1 X t1
t
f ( 2 X t 2 t )
t
X2 сама является автокоррелированной переменной,
Значение мало по сравнению с величиной 2 X 2
13. Последствия автокорреляции
ПОСЛЕДСТВИЯ АВТОКОРРЕЛЯЦИИ1. Истинная автокорреляция не приводит к смещению
оценок регрессии, но оценки перестают быть
эффективными.
2. Автокорреляция (особенно положительная) часто
приводит к уменьшению стандартных ошибок
коэффициентов, что влечет за собой увеличение
t-статистик.
3. Оценка дисперсии остатков Se2 является смещенной
оценкой истинного значения e2 , во многих случаях
занижая его.
4. В силу вышесказанного выводы по оценке качества
коэффициентов и модели в целом, возможно, будут
неверными. Это приводит к ухудшению прогнозных
качеств модели.
14. Обнаружение автокорреляции
ОБНАРУЖЕНИЕ АВТОКОРРЕЛЯЦИИ1. Графический метод.
2. Метод рядов.
3. Специальные тесты.
15. Обнаружение автокорреляции. Тест Дарбина-Уотсона
ОБНАРУЖЕНИЕ АВТОКОРРЕЛЯЦИИ.ТЕСТ ДАРБИНА-УОТСОНА
Критерий Дарбина-Уотсона предназначен для
обнаружения автокорреляции первого порядка.
Он основан на анализе остатков уравнения
регрессии.
16. Тест Дарбина-Уотсона. Ограничения
ТЕСТ ДАРБИНА-УОТСОНА. ОГРАНИЧЕНИЯОграничения:
1. Тест не предназначен для обнаружения других видов
автокорреляции (более чем первого) и не обнаруживает
ее.
2. В модели должен присутствовать свободный член.
3. Данные должны иметь одинаковую периодичность (не
должно быть пропусков в наблюдениях).
4. Тест не применим к авторегрессионным моделям,
содержащих в качестве объясняющей переменной
зависимую переменную с единичным лагом:
m
Yt 0 1 X tj Yt 1 t
j 1
17. Статистика Дарбина-Уотсона
СТАТИСТИКА ДАРБИНА-УОТСОНАСтатистика Дарбина-Уотсона имеет вид:
T
DW
( et et 1 )
2
t 2
T
2
et
t 1
T число наблюдений (обычно временных периодов)
et остатки уравнения регрессии
18. Границы для статистики Дарбина-Уотсона
ГРАНИЦЫ ДЛЯ СТАТИСТИКИ ДАРБИНАУОТСОНАМожно показать, что:
Отсюда следует:
DW 2(1 ret et 1 )
0 DW 4
При положительной корреляции:
ret et 1 1
DW 0
При отрицательной корреляции:
ret et 1 1
DW 4
ret et 1 0
DW 2
При отсутствии корреляции:
19. Критические точки распределения Дарбина-Уотсона
КРИТИЧЕСКИЕ ТОЧКИ РАСПРЕДЕЛЕНИЯДАРБИНА-УОТСОНА
Для более точного определения, какое значение DW
свидетельствует об отсутствии автокорреляции, а какое – о
ее наличии, построена таблица критических точек
распределения Дарбина-Уотсона.
По этой таблице для заданного уровня значимости , числа
наблюдений n и количества объясняющих переменных m
определяются два значения:
dl – нижняя граница, du – верхняя граница
20. Критические точки распределения Дарбина-Уотсона
КРИТИЧЕСКИЕ ТОЧКИ РАСПРЕДЕЛЕНИЯ ДАРБИНА-УОТСОНА21. Расположение критических точек распределения Дарбина-Уотсона
РАСПОЛОЖЕНИЕ КРИТИЧЕСКИХ ТОЧЕКРАСПРЕДЕЛЕНИЯ ДАРБИНА-УОТСОНА
Положительная
автокорреляция
0
Отсутствие
автокорреляции
dL dcrit dU
2
Отрицательная
автокорреляция
4-dU dcrit 4-dL
При положительной корреляции:
При отрицательной корреляции:
При отсутствии корреляции:
d 0
d 4
d 2
4
22. Практическое использование теста Дарбина-Уотсона
ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ ТЕСТАДАРБИНА-УОТСОНА
23. Интерпретация результата теста Дарбина-Уотсона при некотором уровне значимости
ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТА ТЕСТА ДАРБИНАУОТСОНА ПРИ НЕКОТОРОМ УРОВНЕ ЗНАЧИМОСТИ24. Устранение автокорреляции первого порядка (при известном коэффициенте автокорреляции)
УСТРАНЕНИЕ АВТОКОРРЕЛЯЦИИПЕРВОГО ПОРЯДКА
(ПРИ ИЗВЕСТНОМ КОЭФФИЦИЕНТЕ АВТОКОРРЕЛЯЦИИ)
Пусть имеем:
( известно)
Yt 0 1 X t t t t 1 t
Процедура устранения автокорреляции остатков:
Yt Yt Yt 1 ,
Отсюда:
X t X t X t 1 , 0 0 (1 )
Yt 1 X t
0
t
Проблема потери первого наблюдения преодолевается с
помощью поправки Прайса-Винстена:
Y1 1 2 Y1 ,
X t 1 2 X 1
25. Устранение автокорреляции первого порядка. Обобщения
УСТРАНЕНИЕ АВТОКОРРЕЛЯЦИИ ПЕРВОГОПОРЯДКА. ОБОБЩЕНИЯ
Рассмотренное авторегрессионное преобразование
может быть обобщено на:
1) Произвольное число объясняющих переменных
2) Преобразования более высоких порядков AR(2), AR(3) и т.д.:
t 1 t 1 2 t 2 t
t 1 t 1 2 t 2 3 t 3 t
Однако на практике значения коэффициента автокорреляции
обычно неизвестны и его необходимо оценить. Существует
несколько методов оценивания.
26. Способы оценивания коэффициента автокорреляции
СПОСОБЫ ОЦЕНИВАНИЯ КОЭФФИЦИЕНТААВТОКОРРЕЛЯЦИИ
1. На основе статистики Дарбина-Уотсона.
2. Процедура Кохрейна-Оркатта.
3. Процедура Хилдрета-Лу.
4. Процедура Дарбина
5. Метод первых разностей.
27. Определение коэффициента на основе статистики Дарбина-Уотсона
ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА НА ОСНОВЕСТАТИСТИКИ ДАРБИНА-УОТСОНА
DW 2(1 ret et 1 )
re e
DW
1
2
t t 1
Этот метод дает удовлетворительные результаты при
большом числе наблюдений.
28. Итеративная процедура Кохрейна-Оркатта (на примере парной регрессии)
ИТЕРАТИВНАЯ ПРОЦЕДУРАКОХРЕЙНА-ОРКАТТА
(НА ПРИМЕРЕ ПАРНОЙ РЕГРЕССИИ)
1. Определение уравнения регрессии и вектора остатков:
( )
Y t b0 b1 X t
b0 , b1, ei , i 1, n
2. В качестве приближенного значения берется его МНК-оценка:
et et 1 t
3. Для найденного * оцениваются коэффициенты 0 1:
(Yt Yt 1 ) 0 (1 ) 1 ( X t X t 1 ) (et et 1 ) t
4. Подставляем b0 0 (1
Возвращаемся к этапу 2.
), b1 в1 (*) и вычисляем e , i 1, n
i
Критерий остановки: разность между текущей и предыдущей
оценками * стала меньще заданной точности.
29. Итеративная процедура Хилдрета-Лу (поиск по сетке)
ИТЕРАТИВНАЯ ПРОЦЕДУРА ХИЛДРЕТА-ЛУ(ПОИСК ПО СЕТКЕ)
1. Определение уравнения регрессии и вектора остатков:
Y t b0 b1 X t
b0 , b1, ei , i 1, n
2. Оцениваем регрессию
(Yt Yt 1 ) 0 (1 ) 1 ( X t X t 1 ) (et et 1 ) t
для каждого возможного значения [ 1,1] с некоторым
достаточно малым шагом, например 0,001; 0,01 и т.д.
3. Величина *, обеспечивающая минимум стандартной
ошибки регрессии принимается в качестве оценки
автокорреляции остатков.
30. Итеративные процедуры оценивания коэффициента . Выводы
ИТЕРАТИВНЫЕ ПРОЦЕДУРЫ ОЦЕНИВАНИЯКОЭФФИЦИЕНТА . ВЫВОДЫ
1. Сходимость процедур достаточно хорошая.
2. Метод Кохрейна-Оркатта может «попасть» в
локальный (а не глобальный) минимум.
3. Время работы процедуры Хилдрета-Лу
значительно сокращается при наличии априорной
информации об области возможных значений .
31. Процедура Дарбина (на примере парной регрессии)
ПРОЦЕДУРА ДАРБИНА(НА ПРИМЕРЕ ПАРНОЙ РЕГРЕССИИ)
Пусть имеет место автокорреляция остатков:
Yt 0 1 X t t
t t 1 t
Yt 0 1 X t t 1 t
Yt 1 0 1 X t 1 t 1 Yt 1 0 1 X t 1 t 1
Yt Yt 1 0 (1 ) 1 ( X t X t 1 ) t
Yt 0 (1 ) 1 X t 1 X t 1 Yt 1 t
32. Процедура Дарбина (на примере парной регрессии)
ПРОЦЕДУРА ДАРБИНА(НА ПРИМЕРЕ ПАРНОЙ РЕГРЕССИИ)
Процедура Дарбина представляет собой традиционный МНК
снелинейными ограничениями типа равенств:
Yt 0 1 X t 2 X t 1 Yt 1 t
0 (1 );
0
2
1
Способы решения:
1. Решать задачу нелинейного программирования.
2. Двухшаговый МНК Дарбина (полученный коэффициент
автокорреляции используется в поправке Прайса-Винстена).
3. Итеративная процедура расчета.
33. Итеративная процедура метода Дарбина
ИТЕРАТИВНАЯ ПРОЦЕДУРАМЕТОДА ДАРБИНА
1. Считается регрессия и находятся остатки.
2. По остаткам находят оценку коэффициента
автокорреляции остатков.
3.
Оценка
коэффициента
автокорреляции
используется для пересчета данных и цикл
повторяется.
Процесс
останавливается,
как
только
обеспечивается
достаточная
точность
(результаты
перестают
существенно
улучшаться).
34. Обобщенный метод наименьших квадратов. Замечания
ОБОБЩЕННЫЙ МЕТОД НАИМЕНЬШИХКВАДРАТОВ. ЗАМЕЧАНИЯ
Не следует применять обобщенный МНК автоматически
1. Значимый коэффициент DW может указывать просто на
ошибочную спецификацию.
2. Последствия автокорреляции остатков иногда бывают
незначительными.
3. Качество оценок может снизиться из-за уменьшения
числа
степеней
свободы
(нужно
оценивать
дополнительный параметр).
4. Значительно возрастает трудоемкость расчетов.